ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите возможные значения знаменателя обычной дроби вида 1/m, которая представляется чисто периодической десятичной дробью с двумя цифрами в периоде.

   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 979]      



Задача 60963

Темы:   [ Многочлен n-й степени имеет не более n корней ]
[ Производная и касательная ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4-
Классы: 10,11

Можно ли из какой-то точки плоскости провести к графику многочлена n-й степени больше чем n касательных?

Прислать комментарий     Решение

Задача 60971

Тема:   [ Теорема Безу. Разложение на множители ]
Сложность: 4-
Классы: 8,9,10,11

Многочлен P(x) дает остаток 2 при делении на  x – 1,  и остаток 1 при делении на  x – 2.
Какой остаток дает P(x) при делении на многочлен  (x – 1)(x – 2)?

Прислать комментарий     Решение

Задача 60972

Темы:   [ Теорема Безу. Разложение на множители ]
[ Методы решения задач с параметром ]
Сложность: 4-
Классы: 8,9,10,11

Найдите необходимое и достаточное условие для того, чтобы выражение  x³ + y³ + z³ + kxyz  делилось на  x + y + z.

Прислать комментарий     Решение

Задача 60977

Тема:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4-
Классы: 8,9,10,11

Кубическое и квадратное уравнения с рациональными коэффициентами имеют общее решение.
Докажите, что у кубического уравнения есть рациональный корень.

Прислать комментарий     Решение

Задача 60991

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Алгоритм Евклида ]
Сложность: 4-
Классы: 8,9,10,11

Найдите наибольший общий делитель многочленов P(x), Q(x) и представьте его в виде  P(x)U(x) + Q(x)V(x):
  а)  P(x) = x4 + x³ – 3x² – 4x – 1,  Q(x) = x³ + x² – x – 1;
  б)  P(x) = 3x4 – 5x³ + 4x² – 2x + 1,  Q(x) = 3x³ – 2x² + x – 1.

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 979]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .