Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 979]
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Как известно, квадратное уравнение имеет не более двух корней. А может ли уравнение $[x^2] + px + q = 0$ при $p \ne 0$ иметь более 100 корней? ($[x^2]$ обозначает наибольшее целое число, не превосходящее $x^2$.)
|
|
|
Сложность: 4- Классы: 9,10,11
|
Существуют ли такие 100 квадратных трёхчленов, что каждый из них имеет два корня, а сумма любых двух из них корней не имеет?
Квадратный трёхчлен ax² + bx + c имеет два действительных корня. Верно ли, что трёхчлен a101x² + b101x + c101 также имеет два действительных корня?
|
|
|
Сложность: 4- Классы: 9,10,11
|
Рассмотрим графики функций y = x² + px + q, которые пересекают оси координат в трёх различных точках.
Докажите, что все окружности, описанные около треугольников с вершинами в этих точках, имеют общую точку.
|
|
|
Сложность: 4- Классы: 8,9,10
|
Пусть α – корень уравнения x² + px + q = 0, а β – уравнения x² – px – q = 0. Докажите, что между α и β лежит корень уравнения x² – 2px – 2q = 0.
Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 979]