ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В выпуклом четырёхугольнике ABCD углы B и D равны,  CD = 4BC,  а биссектриса угла A проходит через середину стороны CD.
Чему может быть равно отношение  AD : AB?

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 152]      



Задача 65081

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Биссектриса угла (ГМТ) ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол, опирающийся на диаметр ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD углы B и D равны,  CD = 4BC,  а биссектриса угла A проходит через середину стороны CD.
Чему может быть равно отношение  AD : AB?

Прислать комментарий     Решение

Задача 116872

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Признаки подобия ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 9,10

Дана равнобокая трапеция ABCD  (AD || BC).  На дуге AD (не содержащей точек B и C) описанной окружности этой трапеции произвольно выбрана точка M. Докажите, что основания перпендикуляров, опущенных из вершин A и D на отрезки BM и CM, лежат на одной окружности.

Прислать комментарий     Решение

Задача 110211

Темы:   [ Ортоцентр и ортотреугольник ]
[ Пересекающиеся окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Симметрия помогает решить задачу ]
[ Признаки подобия ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 8,9,10

Через точку пересечения высот остроугольного треугольника ABC проходят три окружности, каждая из которых касается одной из сторон треугольника в основании высоты. Докажите, что вторые точки пересечения окружностей являются вершинами треугольника, подобного исходному.

Прислать комментарий     Решение

Задача 108226

Темы:   [ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Признаки подобия ]
[ Вписанный угол равен половине центрального ]
Сложность: 5-
Классы: 9,10

Пусть A', B' и C' – точки касания вневписанных окружностей с соответствующими сторонами треугольника ABC. Описанные окружности треугольников A'B'C, AB'C' и A'BC' пересекают второй раз описанную окружность треугольника ABC в точках C1, A1 и B1 соответственно. Докажите, что треугольник A1B1C1 подобен треугольнику, образованному точками касания вписанной окружности треугольника с его сторонами.

Прислать комментарий     Решение

Задача 73714

Темы:   [ Ортоцентр и ортотреугольник ]
[ Итерации ]
[ Неравенства для углов треугольника ]
[ Геометрические интерпретации в алгебре ]
[ Признаки подобия ]
[ Сжимающие отображения и неподвижные точки ]
[ Композиции движений. Теорема Шаля ]
Сложность: 5
Классы: 9,10,11

Для каждого непрямоугольного треугольника T обозначим через T1 треугольник, вершинами которого служат основания высот треугольника T; через T2 – треугольник, вершинами которого служат основания высот треугольника T1; аналогично определим треугольники T3, T4 и так далее. Каким должен быть треугольник T, чтобы
  а) треугольник T1 был остроугольным?
  б) в последовательности T1, T2, T3, ... встретился прямоугольный треугольник Tn (и таким образом треугольник Tn+1 не определён)?
  в) треугольник T3 был подобен треугольнику T?
  г) Для каждого натурального числа n выясните, сколько существует неподобных друг другу треугольников T, для которых треугольник Tn подобен треугольнику Т.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 152]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .