ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Подобные треугольники
>>
Вспомогательные подобные треугольники
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Единичный квадрат разрезан на n треугольников. Докажите, что одним из треугольников можно накрыть квадрат со стороной 1/n. Решение |
Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 512]
Точка M – середина стороны AC треугольника ABC. На отрезках AM и CM выбраны точки P и Q соответственно таким образом, что PQ = AC/2. Описанная окружность треугольника ABQ второй раз пересекает сторону BC в точке X, а описанная окружность треугольника BCP, второй раз пересекает сторону AB в точке Y. Докажите, что четырёхугольник BXMY – вписанный.
Единичный квадрат разрезан на n треугольников. Докажите, что одним из треугольников можно накрыть квадрат со стороной 1/n.
По стороне AB треугольника ABC движется точка X, а по описанной окружности Ω – точка Y так, что прямая XY проходит через середину дуги AB. Найдите геометрическое место центров описанных окружностей треугольников IXY, где I – центр вписанной окружности треугольника ABC.
I – центр вписанной окружности треугольника ABC, HB, HC – ортоцентры треугольников ABI и ACI соответственно, K – точка касания вписанной окружности треугольника со стороной BC. Докажите, что точки HB, HC и K лежат на одной прямой.
Даны две окружности, пересекающиеся в точках $P$ и $Q$. Произвольная прямая $l$, проходящая через $Q$, повторно пересекает окружности в точках $A$ и $B$. Прямые, касающиеся окружностей в точках $A$ и $B$, пересекаются в точке $C$, а биссектриса угла $CPQ$ пересекает прямую $AB$ в точке $D$. Докажите, что все точки $D$, которые можно так получить, выбирая по-разному прямую $l$, лежат на одной окружности.
Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 512] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|