ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Доказать, что уравнение 4k – 4l = 10n не имеет решений в целых числах.
Сформулируйте теорему, обратную теореме Пифагора. Верна ли она?
В равнобедренном треугольнике ABC длина основания AC равна
2
Решить в целых числах уравнение xy = x + y. Аня, Боря и Вася решили пойти на "Ёлку". Они договорились встретиться на автобусной остановке, но не знают, кто во сколько придёт. Каждый из них может прийти в случайный момент времени с 15.00 до 16.00. Вася самый терпеливый из всех: если он придёт и на остановке не будет ни Ани, ни Бори, то он будет ждать кого-нибудь из них 15 минут, и если никого не дождётся, пойдёт на "Ёлку" один. Боря менее терпеливый: он будет ждать лишь 10 минут. Аня самая нетерпеливая: она вообще не будет ждать. Однако если Боря и Вася встретятся, то они будут ждать Аню до 16.00. Какова вероятность того, что на "Ёлку" они пойдут все вместе? В странах Диллии и Даллии денежными единицами являются диллеры и даллеры соответственно, причем в Диллии диллер меняется на 10 даллеров, а в Даллии даллер меняется на 10 диллеров. Начинающий финансист имеет 1 диллер и может свободно перезжать из одной страны в другую и менять свои деньги в обеих странах. Докажите, что количество даллеров у него никогда не сравняется с количеством диллеров.
На продолжениях сторон треугольника ABC взяты точки A1, B1
и C1 так, что
Круг разделён на шесть секторов, в каждом из которых стоит фишка. Разрешается за один ход сдвинуть любые две фишки в соседние с ними сектора. Дана шахматная доска. Разрешается перекрашивать другой цвет сразу все клетки, расположенные внутри любого квадрата 2×2. Даны шесть чисел: 1, 2, 3, 4, 5, 6. Разрешается к любым двум из них прибавлять по 1. На доске выписаны числа 1, 2, ..., 20. Разрешается стереть любые два числа a и b и заменить их на число ab + a + b. Существуют ли четыре подряд идущих натуральных числа, каждое из которых является степенью (большей 1) другого натурального числа? В выпуклом четырёхугольнике ABCD отмечены середины противоположных сторон BC и AD– точки M и N. Диагональ AC проходит через середину отрезка MN. Найдите площадь АВСD, если площадь треугольника АВС равна S. Найти все целые натуральные решения уравнения (n + 2)! – (n + 1)! – n! = n2 + n4. Через точку K , данную на стороне AB треугольника ABC , проведите прямую так, чтобы она разделила площадь треугольника пополам. В выпуклом четырехугольнике АВСD точка Е — середина CD, F — середина АD, K — точка пересечения АС и ВЕ. Докажите, что площадь треугольника BKF в два раза меньше площади треугольника АВС. Два рыбака поймали 80 рыб, причём 5/9 улова первого составляли караси, а 7/11 улова второго – окуни. Сколько рыб поймал каждый из них? Решить в целых числах уравнение (2x + y)(5x + 3y) = 7. В бумажном квадрате случайным образом выбирается точка O. Затем квадрат сгибают так, чтобы каждая вершина наложилась на точку O. На рисунке показана одна из возможных схем складывания. Найдите математическое ожидание числа сторон появившегося многоугольника. |
Страница: << 1 2 3 [Всего задач: 12]
Аня, Боря и Вася решили пойти на "Ёлку". Они договорились встретиться на автобусной остановке, но не знают, кто во сколько придёт. Каждый из них может прийти в случайный момент времени с 15.00 до 16.00. Вася самый терпеливый из всех: если он придёт и на остановке не будет ни Ани, ни Бори, то он будет ждать кого-нибудь из них 15 минут, и если никого не дождётся, пойдёт на "Ёлку" один. Боря менее терпеливый: он будет ждать лишь 10 минут. Аня самая нетерпеливая: она вообще не будет ждать. Однако если Боря и Вася встретятся, то они будут ждать Аню до 16.00. Какова вероятность того, что на "Ёлку" они пойдут все вместе?
В бумажном квадрате случайным образом выбирается точка O. Затем квадрат сгибают так, чтобы каждая вершина наложилась на точку O. На рисунке показана одна из возможных схем складывания. Найдите математическое ожидание числа сторон появившегося многоугольника.
Страница: << 1 2 3 [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке