ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Произвольный треугольник разрезали на равные треугольники прямыми, параллельными сторонам (как показано на рисунке).
Докажите, что ортоцентры шести закрашенных треугольников лежат на одной окружности.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 226]      



Задача 54608

Темы:   [ Подобные треугольники и гомотетия (построения) ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки впишите в данный угол окружность, проходящую через данную точку.

Прислать комментарий     Решение


Задача 53749

 [Замечательное свойство трапеции]
Темы:   [ Замечательное свойство трапеции ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Докажите, что точка пересечения продолжений боковых сторон трапеции, середины оснований и точка пересечения диагоналей лежат на одной прямой.

Прислать комментарий     Решение

Задача 55779

Темы:   [ Подобные треугольники и гомотетия (построения) ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки впишите в данный треугольник другой треугольник, стороны которого соответственно параллельны трём данным прямым.

Прислать комментарий     Решение


Задача 65872

Темы:   [ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Произвольный треугольник разрезали на равные треугольники прямыми, параллельными сторонам (как показано на рисунке).
Докажите, что ортоцентры шести закрашенных треугольников лежат на одной окружности.

Прислать комментарий     Решение

Задача 66830

Темы:   [ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,10,11

Автор: Соколов А.

Из центра $O$ описанной окружности Ω треугольника $ABC$ опустили перпендикуляры $OP$ и $OQ$ на биссектрисы внутреннего и внешнего углов при вершине $B$.
Докажите, что прямая $PQ$ делит пополам отрезок, соединяющий середины сторон $CB$ и $AB$.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 226]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .