ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри равностороннего треугольника ABC отмечена точка M так, что  ∠АМС = 150°.
Докажите, что отрезки АМ, ВМ и СМ таковы, что сумма квадратов двух из них равна квадрату третьего.

   Решение

Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 292]      



Задача 53808

Темы:   [ Вспомогательная окружность ]
[ Две пары подобных треугольников ]
[ Теорема Пифагора (прямая и обратная) ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Трапеция AEFG  (EF || AG)  расположена в квадрате ABCD со стороной 3 так, что точки E, F и G лежат на сторонах AB, BC и CD соответственно. Диагонали AF и EG трапеции перпендикулярны,  BF = 1.  Найдите периметр трапеции.

Прислать комментарий     Решение

Задача 65966

Темы:   [ Правильный (равносторонний) треугольник ]
[ Поворот помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 9,10

Внутри равностороннего треугольника ABC отмечена точка M так, что  ∠АМС = 150°.
Докажите, что отрезки АМ, ВМ и СМ таковы, что сумма квадратов двух из них равна квадрату третьего.

Прислать комментарий     Решение

Задача 66294

Темы:   [ Симметрия помогает решить задачу ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9,10

В треугольнике АВС  ∠В = 110°,  ∠С = 50°.  На стороне АВ выбрана такая точка Р, что  ∠РСВ = 30°,  а на стороне АС – такая точка Q, что
ABQ = 40°.  Найдите угол QPC.

Прислать комментарий     Решение

Задача 65875

Темы:   [ Правильные многоугольники ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9,10

Автор: Тимохин М.

Дан правильный 2n-угольник A1A1...A2n с центром O, причём  n ≥ 5.  Диагонали A2An–1 и A3An пересекаются в точке F, а A1A3 и A2A2n–2 – в точке P.
Докажите, что  PF = PO.

Прислать комментарий     Решение

Задача 111847

Темы:   [ Три точки, лежащие на одной прямой ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Медиана, проведенная к гипотенузе ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 9,10

Дан остроугольный треугольник ABC. Точки M и N – середины сторон AB и BC соответственно, точка H – основание высоты, опущенной из вершины B. Описанные окружности треугольников AHN и CHM пересекаются в точке P   (P ≠ H).  Докажите, что прямая PH проходит через середину отрезка MN.

Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .