ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Все грани треугольной пирамиды SABC – остроугольные треугольники. SX и SY – высоты граней ASВ и BSС. Известно, что четырёхугольник AXYC – вписанный. Докажите, что прямые AC и BS перпендикулярны.

   Решение

Задачи

Страница: << 133 134 135 136 137 138 139 [Всего задач: 694]      



Задача 116517

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Куб ]
[ Подобные треугольники (прочее) ]
[ Уравнение плоскости ]
[ Теорема о трех перпендикулярах ]
[ Объем тетраэдра и пирамиды ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 10,11

В кубе ABCDA1B1C1D1, ребро которого равно 6, точки M и N – середины рёбер AB и B1C1 соответственно, а точка K расположена на ребре DC так, что
DK = 2KC.  Найдите
  а) расстояние от точки N до прямой AK;
  б) расстояние между прямыми MN и AK;
  в) расстояние от точки A1 до плоскости треугольника MNK.

Прислать комментарий     Решение

Задача 109618

Темы:   [ Свойства сечений ]
[ Пирамида (прочее) ]
[ Правильные многоугольники ]
[ Перебор случаев ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 5-
Классы: 10,11

Докажите, что при  n ≥ 5  сечение пирамиды, в основании которой лежит правильный n-угольник, не может являться правильным (n+1)-угольником.

Прислать комментарий     Решение

Задача 65989

Темы:   [ Тетраэдр (прочее) ]
[ Теорема о трех перпендикулярах ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки перпендикулярности ]
Сложность: 4-
Классы: 10,11

Все грани треугольной пирамиды SABC – остроугольные треугольники. SX и SY – высоты граней ASВ и BSС. Известно, что четырёхугольник AXYC – вписанный. Докажите, что прямые AC и BS перпендикулярны.

Прислать комментарий     Решение

Задача 108836

Темы:   [ Отношение объемов ]
[ Свойства сечений ]
[ Объем тела равен сумме объемов его частей ]
[ Объем призмы ]
[ Расстояние между скрещивающимися прямыми ]
[ Cкрещивающиеся прямые, угол между ними ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4+
Классы: 10,11

Две плоскости, параллельные противоположным рёбрам AB и CD тетраэдра ABCD , делят ребро BC на три равные части. Какая часть объёма тетраэдра заключена между этими плоскостями?
Прислать комментарий     Решение


Страница: << 133 134 135 136 137 138 139 [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .