Страница:
<< 131 132 133 134
135 136 137 >> [Всего задач: 697]
|
|
|
Сложность: 4+ Классы: 10,11
|
Дано два тетраэдра A1A2A3A4 и B1B2B3B4. Рассмотрим шесть пар рёбер AiAj и BkBl, где (i, j, k, l) – перестановка чисел (1, 2, 3, 4) (например, A1A2 и B3B4). Известно, что во всех парах, кроме одной, рёбра перпендикулярны. Докажите, что в оставшейся паре рёбра тоже перпендикулярны.
|
|
|
Сложность: 4+ Классы: 10,11
|
В пространстве дан треугольник ABC и сферы S1 и S2, каждая из которых проходит через точки A, B и C. Для точек M сферы S1, не лежащих в плоскости треугольника ABC, проводятся прямые MA, MB и MC, пересекающие сферу S2 вторично в точках A1, B1 и C1 соответственно. Докажите, что плоскости, проходящие через точки A1, B1 и C1, касаются фиксированной сферы либо проходят через фиксированную точку.
|
|
|
Сложность: 5- Классы: 9,10,11
|
Куб n×n×n сложен из единичных кубиков. Дана замкнутая несамопересекающаяся ломаная, каждое звено которой соединяет центры двух соседних (имеющих общую грань) кубиков. Назовём отмёченными грани кубиков, пересекаемые данной ломаной. Докажите, что рёбра кубиков можно окрасить в два цвета так, чтобы каждая отмеченная грань имела нечётное число, а всякая неотмеченная грань – чётное число сторон каждого цвета.
|
|
|
Сложность: 5- Классы: 10,11
|
Сфера, вписанная в тетраэдр, касается одной из его граней в точке пересечения биссектрис, другой – в точке пересечения высот, третьей – в точке пересечения медиан. Докажите, что тетраэдр правильный.
|
|
|
Сложность: 5 Классы: 10,11
|
На диагонали
AC нижней грани единичного куба
ABCDA1B1C1D1
отложен отрезок
AE длины
l . На диагонали
B1D1 его верхней
грани отложен отрезок
B1F длиной
ml . При каком
l (и
фиксированном
m>0 ) длина отрезка
EF будет наименьшей?
Страница:
<< 131 132 133 134
135 136 137 >> [Всего задач: 697]