ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи К описанной окружности треугольника $ABC$ проведены касательные в точках $B$ и $C$. Лучи $CC_1$, $BB_1$, где $B_1$ и $C_1$ – середины сторон $AC$ и $AB$, пересекают эти касательные в точках $K$ и $L$ соответственно. Докажите, что $\angle BAK=\angle CAL$. Дано натуральное число $n > 1$. Назовём положительную обыкновенную дробь (не обязательно несократимую) хорошей, если сумма её числителя и знаменателя равна $n$. Докажите, что любую положительную обыкновенную дробь, знаменатель которой меньше $n$, можно выразить через хорошие дроби (не обязательно различные) с помощью операций сложения и вычитания тогда и только тогда, когда $n$ — простое число. Напомним, что обыкновенная дробь — это отношение целого числа к натуральному. В треугольнике ABC медианы AMA, BMB и CMC пересекаются в точке M. Построим окружность ΩA, проходящую через середину отрезка AM и касающуюся отрезка BC в точке MA. Аналогично строятся окружности ΩB и ΩC. Докажите, что окружности ΩA, ΩB и ΩC имеют общую точку. В круг радиуса 1 помещено два треугольника,
площадь каждого из которых больше 1. Докажите, что эти
треугольники пересекаются.
Многоугольник площади B вписан в окружность
площади A и описан вокруг окружности площади C. Докажите,
что
2B Существует ли а) ограниченная, б) неограниченная фигура на плоскости, имеющая среди своих осей симметрии две параллельные несовпадающие прямые? При каком натуральном K величина Сколько осей симметрии может быть у треугольника?
Докажите, что площадь трапеции равна произведению средней линии на высоту.
Доказать, что можно расставить в вершинах правильного n-угольника действительные числа x1, x2, ..., xn, все отличные от 0, так, чтобы для любого правильного k-угольника, все вершины которого являются вершинами исходного n-угольника, сумма чисел, стоящих в его вершинах, равнялась 0. Графики двух квадратных трёхчленов пересекаются в двух точках. В обеих точках касательные к графикам перпендикулярны. |
Страница: << 1 2 [Всего задач: 9]
К графикам функций $y=\cos x$ и $y=a \tan x$ провели касательные в некоторой точке их пересечения. Докажите, что эти касательные перпендикулярны друг другу для любого $a\neq0$.
Найдите такое значение $a > 1$, при котором уравнение $a^x = \log_a x$ имеет единственное решение.
Последовательность чисел x0, x1, x2,...задается условиями
x0 = 1, xn + 1 = axn (n Найдите наибольшее число a, для
которого эта последовательность имеет предел. Чему равен этот
предел для такого a?
Графики двух квадратных трёхчленов пересекаются в двух точках. В обеих точках касательные к графикам перпендикулярны.
Страница: << 1 2 [Всего задач: 9]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке