ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
С числом разрешается производить две
операции: ``увеличить в два раза'' и ``увеличить на
1''. За какое наименьшее число операций можно из числа 0
получить
Дан треугольник ABC, в котором AC = На доске были записаны числа 3, 9 и 15. Разрешалось сложить два записанных числа, вычесть из этой суммы третье, а результат записать на доску вместо того числа, которое вычиталось. После многократного выполнения такой операции на доске оказались три числа, наименьшее из которых было 2013. Каковы были два остальных числа? В окружность вписан неправильный многоугольник. Если вершина A разбивает дугу, заключенную между двумя другими вершинами, на две неравные части, то такая вершина A называется неустойчивой. Каждую секунду какая-нибудь неустойчивая вершина перепрыгивает в середину своей дуги. В результате каждую секунду образуется новый многоугольник. Докажите, что сколько бы секунд ни прошло, многоугольник никогда не будет равным исходному. В треугольник ABC помещены три равных окружности, каждая из которых касается двух сторон треугольника. Все три окружности имеют одну общую точку. Найдите радиусы этих окружностей, если радиусы вписанной и описанной окружностей треугольника ABC равны r и R. Точка D – центр описанной окружности остроугольного треугольника ABC. Окружность, проходящая через точки A, B и D, пересекает стороны AC и BC в точках M и N соответственно. Докажите, что описанные окружности треугольников ABD и MNC равны. В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 243]
Произвольный треугольник разрезали на равные треугольники прямыми, параллельными сторонам (как показано на рисунке).
В остроугольном треугольнике ABC AA', BB' и CC' – высоты. Точки Ca, Cb симметричны C' относительно AA' и BB'. Аналогично определены точки Ab, Ac, Bc, Ba. Докажите, что прямые AbBa, BcCb и CaAc параллельны.
Пусть H – ортоцентр остроугольного треугольника ABC. Серединный перпендикуляр к отрезку BH пересекает стороны BA, BC в точках A0, C0 соответственно. Докажите, что периметр треугольника A0OC0 (O – центр описанной окружности треугольника ABC) равен AC.
В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Пусть H – ортоцентр остроугольного треугольника ABC. На касательной в точке H к описанной окружности ωA треугольника BHC взята точка XA, что AH = AXA и H ≠ XA. Аналогично определены точки XB и XC. Докажите, что треугольник XAXBXC и ортотреугольник треугольника ABC подобны.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 243]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке