ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Докажите, что для любого числа p > 2 найдется такое число $ \beta$, что

$\displaystyle \underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2+
\sqrt{2+p}}}}}_{n~\mbox{\scriptsize {радикалов}}}^{}\,$ = $\displaystyle \beta^{2^n}_{}$ - $\displaystyle \beta^{-2^n}_{}$.


Вниз   Решение


Автор: Фольклор

На плоскости нарисован чёрный квадрат. Имеется семь квадратных плиток того же размера. Нужно положить их на плоскость так, чтобы они не перекрывались и чтобы каждая плитка покрывала хотя бы часть чёрного квадрата (хотя бы одну точку внутри него). Как это сделать?

ВверхВниз   Решение


Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан?

ВверхВниз   Решение


На доске n×n расставлено  n – 1  фишек так, что никакие две из них не стоят на соседних (по стороне) клетках.
Докажите, что одну из них можно передвинуть на соседнюю клетку так, чтобы снова никакие две фишки не стояли на соседних клетках.

ВверхВниз   Решение


На планете Тау Кита суша занимает больше половины всей площади. Доказать, что таукитяне могут прорыть через центр планеты шахту, соединяющую сушу с сушей.

ВверхВниз   Решение


Может ли быть так, что   а)  σ(n) > 3n;   б)  σ(n) > 100n?

ВверхВниз   Решение


Имеются плашки (вырезанные из картона прямоугольники) размера 2×1. На каждой плашке нарисована одна диагональ. Есть плашки двух сортов, так как диагональ можно расположить двумя способами, причём плашек каждого сорта имеется достаточно много. Можно ли выбрать 18 плашек и сложить из них квадрат 6×6 так, чтобы концы диагоналей нигде не совпали?

ВверхВниз   Решение


Какое число нужно вычесть из числителя дроби 537/463 и прибавить к знаменателю, чтобы после сокращения получить 1/9?

ВверхВниз   Решение


В равнобедренном треугольнике ABC высоты AD и CE, опущенные на боковые стороны, образуют угол AMC, равный 48°. Найдите углы треугольника ABC.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD точки E и F являются серединами сторон BC и CD соответственно. Отрезки AE, AF и EF делят четырёхугольник на четыре треугольника, площади которых равны (в каком-то порядке) последовательным натуральным числам. Каково наибольшее возможное значение площади треугольника ABD?

ВверхВниз   Решение


Сторона основания правильной треугольной пирамиды равна a . Боковое ребро образует с плоскостью основания угол 60o . Найдите высоту пирамиды.

ВверхВниз   Решение


Найдите наибольший член последовательности $x_n = \frac{n-1}{n^2+1}$.

ВверхВниз   Решение


Угол при вершине B равнобедренного треугольника ABC равен 108°. Перпендикуляр к биссектрисе AD этого треугольника, проходящий через точку D, пересекает сторону AC в точке E. Докажите, что  DE = BD.

ВверхВниз   Решение


Найдите объём правильной четырёхугольной пирамиды с высотой h и углом β боковой грани с плоскостью основания.

ВверхВниз   Решение


В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Докажите, что точка K принадлежит средней линии треугольника ABC, параллельной AC.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 243]      



Задача 65872

Темы:   [ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Произвольный треугольник разрезали на равные треугольники прямыми, параллельными сторонам (как показано на рисунке).
Докажите, что ортоцентры шести закрашенных треугольников лежат на одной окружности.

Прислать комментарий     Решение

Задача 66233

Темы:   [ Ортоцентр и ортотреугольник ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ ГМТ - прямая или отрезок ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10

В остроугольном треугольнике ABC  AA', BB' и CC' – высоты. Точки Ca, Cb симметричны C' относительно AA' и BB'. Аналогично определены точки Ab, Ac, Bc, Ba. Докажите, что прямые AbBa, BcCb и CaAc параллельны.

Прислать комментарий     Решение

Задача 66238

Темы:   [ Ортоцентр и ортотреугольник ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Периметр треугольника ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 9,10

Автор: Соколов А.

Пусть H – ортоцентр остроугольного треугольника ABC. Серединный перпендикуляр к отрезку BH пересекает стороны BA, BC в точках A0, C0 соответственно. Докажите, что периметр треугольника A0OC0 (O – центр описанной окружности треугольника ABC) равен AC.

Прислать комментарий     Решение

Задача 66240

Темы:   [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Три точки, лежащие на одной прямой ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Медиана, проведенная к гипотенузе ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 9,10

В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Докажите, что точка K принадлежит средней линии треугольника ABC, параллельной AC.

Прислать комментарий     Решение

Задача 66261

Темы:   [ Ортоцентр и ортотреугольник ]
[ Признаки подобия ]
[ Перенос помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол равен половине центрального ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 9,10

Пусть H – ортоцентр остроугольного треугольника ABC. На касательной в точке H к описанной окружности ωA треугольника BHC взята точка XA, что  AH = AXA  и  H ≠ XA.  Аналогично определены точки XB и XC. Докажите, что треугольник XAXBXC и ортотреугольник треугольника ABC подобны.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 243]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .