Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

В треугольнике ABC угол C равен 75°, а угол B равен 60°. Вершина M равнобедренного прямоугольного треугольника BCM с гипотенузой BC расположена внутри треугольника ABC. Найдите угол MAC.

Вниз   Решение


Четыре мышонка: Белый, Серый, Толстый и Тонкий делили головку сыра. Они разрезали её на 4 внешне одинаковые дольки. В некоторых дольках оказалось больше дырок, поэтому долька Тонкого весила на 20 г меньше дольки Толстого, а долька Белого — на 8 г меньше дольки Серого. Однако Белый не расстроился, т.к. его долька весила ровно четверть от массы всего сыра.

Серый отрезал от своего куска 8 г, а Толстый — 20 г. Как мышата должны поделить образовавшиеся 28 г сыра, чтобы у всех сыра стало поровну? Не забудьте пояснить свой ответ.

ВверхВниз   Решение


Мальчик Стёпа говорит: позавчера мне было 10 лет, а в следующем году мне исполнится 13. Может ли такое быть?

ВверхВниз   Решение


Четырехугольник ABCD вписанный. Докажите, что точка Микеля для прямых, содержащих его стороны, лежит на отрезке, соединяющем точки пересечения продолжений сторон.

ВверхВниз   Решение


Четыре прямые образуют четыре треугольника.
а) Докажите, что описанные окружности этих треугольников имеют общую точку (точка Микеля).
б) Докажите, что центры описанных окружностей этих треугольников лежат на одной окружности, проходящей через точку Микеля.

ВверхВниз   Решение


В треугольнике ABC на сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что  BF = 2CF,  CE = 2AE  и угол DEF – прямой.
Докажите, что DE – биссектриса угла ADF.

ВверхВниз   Решение


Можно ли выписать в ряд десять чисел так, чтобы сумма любых пяти чисел подряд была бы положительна, а сумма любых семи подряд отрицательна?

ВверхВниз   Решение


Прямая, проходящая через вершину A квадрата ABCD, пересекает сторону CD в точке E и прямую BC в точке F. Докажите, что  1/AE2 + 1/AF2 = 1/AB2.

ВверхВниз   Решение


В треугольной пирамиде SABC высота SO проходит через точку O – центр круга, вписанного в основание ABC пирамиды. Известно, что SAC = 60o , SCA = 45o , а отношение площади треугольника AOB к площади треугольника ABC равно . Найдите угол BSC .

ВверхВниз   Решение


ABC - прямоугольный треугольник с прямым углом C. Докажите, что a + b < c + hc.

ВверхВниз   Решение


Обозначим через  L(m)  длину периода дроби   1/m. Докажите, что если  (m1, 10) = 1  и  (m2, 10) = 1,  то справедливо равенство  L(m1m2) = [L(m1), L(m2)].
Чему равна длина периода дроби  1/m1 + 1/m2?

ВверхВниз   Решение


В треугольнике ABC  ∠A = 60°,  точки M и N на сторонах AB и AC соответственно таковы, что центр описанной окружности треугольника ABC делит отрезок MN пополам. Найдите отношение  AN : MB.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]      



Задача 54188

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

В равнобедренном треугольнике ABC угол при вершине B равен 120°, а основание равно 8. Найдите боковые стороны.

Прислать комментарий     Решение

Задача 56865

Тема:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 8,9

В треугольнике ABC с углом A, равным  120o, биссектрисы AA1, BB1 и CC1 пересекаются в точке O. Докажите, что  $ \angle$A1C1O = 30o.
Прислать комментарий     Решение


Задача 56866

Тема:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены биссектрисы BB1 и CC1. Докажите, что если описанные окружности треугольников ABB1 и ACC1 пересекаются в точке, лежащей на стороне BC, то $ \angle$A = 60o.
Прислать комментарий     Решение


Задача 64552

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Отрезок, видимый из двух точек под одним углом ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3

В треугольнике ABC угол C равен 75°, а угол B равен 60°. Вершина M равнобедренного прямоугольного треугольника BCM с гипотенузой BC расположена внутри треугольника ABC. Найдите угол MAC.

Прислать комментарий     Решение

Задача 66257

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Вписанный угол, опирающийся на диаметр ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В треугольнике ABC  ∠A = 60°,  точки M и N на сторонах AB и AC соответственно таковы, что центр описанной окружности треугольника ABC делит отрезок MN пополам. Найдите отношение  AN : MB.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .