ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Белухов Н.

Четырехугольник $ABCD$ описан вокруг окружности радиуса $1$. Найдите наибольшее возможное значение величины $\frac1{AC^2}+\frac1{BD^2}$.

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 165]      



Задача 116251

Темы:   [ Задачи на движение ]
[ Экстремальные свойства (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 8,9

Три спортсмена стартовали одновременно из точки A и бежали по прямой в точку B каждый со своей постоянной скоростью. Добежав до точки B, каждый из них мгновенно повернул обратно и бежал с другой постоянной скоростью к финишу в точке A. Их тренер бежал рядом и все время находился в точке, сумма расстояний от которой до участников забега была наименьшей. Известно, что расстояние от A до B равно 60 м и все спортсмены финишировали одновременно. Мог ли тренер пробежать меньше 100 м?

Прислать комментарий     Решение

Задача 55614

Темы:   [ Симметрия помогает решить задачу ]
[ Экстремальные свойства. Задачи на максимум и минимум. ]
Сложность: 4
Классы: 8,9

Докажите, что среди всех четырёхугольников с данной площадью наименьший периметр имеет квадрат.

Прислать комментарий     Решение


Задача 55690

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Экстремальные свойства. Задачи на максимум и минимум. ]
[ Перенос помогает решить задачу ]
Сложность: 4
Классы: 8,9

В каком месте следует построить мост MN через реку, разделяющую две данные деревни A и B, чтобы путь AMNB из деревни A в деревню B был кратчайшим (берега реки считаются параллельными прямыми, мост предполагается перпендикулярным к реке).

Прислать комментарий     Решение


Задача 55243

Темы:   [ Перенос помогает решить задачу ]
[ Четырехугольники (экстремальные свойства) ]
Сложность: 4+
Классы: 8,9

Среди всех четырёхугольников с данными диагоналями и данным углом между ними найдите четырёхугольник наименьшего периметра.

Прислать комментарий     Решение


Задача 66688

Темы:   [ Описанные четырехугольники ]
[ Четырехугольники (экстремальные свойства) ]
Сложность: 4+
Классы: 9,10,11

Автор: Белухов Н.

Четырехугольник $ABCD$ описан вокруг окружности радиуса $1$. Найдите наибольшее возможное значение величины $\frac1{AC^2}+\frac1{BD^2}$.
Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 165]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .