Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
Докажите, что длина гипотенузы – нечётное число, а длины катетов имеют разную чётность.

Вниз   Решение


Стороны выпуклого пятиугольника ABCDE продолжили так, что образовалась пятиконечная звезда AHBKCLDMEN (рис.). Около треугольников — лучей звезды описали окружности. Докажите, что пять точек пересечения этих окружностей, отличных от A, B, C, D, E, лежат на одной окружности.


ВверхВниз   Решение


Длины всех сторон прямоугольного треугольника являются целыми числами, причем наибольший общий делитель этих чисел равен 1. Докажите, что его катеты равны 2mn и m2 - n2, а гипотенуза равна m2 + n2, где m и n — натуральные числа.



ВверхВниз   Решение


Даны окружность S и две хорды AB и CD. Циркулем и линейкой постройте на окружности такую точку X, чтобы прямые AX и BX высекали на CD отрезок а) имеющий данную длину a; б) делящийся пополам в данной точке E хорды CD.

ВверхВниз   Решение


Через точку M, лежащую внутри угла с вершиной A, проведены прямые, параллельные сторонам угла и пересекающие эти стороны в точках B и C. Известно, что  ∠ACB = 50°,  а угол, смежный с углом ACM, равен 40°. Найдите углы треугольников BCM и ABC.

ВверхВниз   Решение


Автор: Saghafian M.

Мортеза отметил на плоскости шесть точек и нашел площади всех 20 треугольников с вершинами в этих точках. Может ли оказаться, что все полученные числа целые, а их сумма равна 2019?

ВверхВниз   Решение


а) Докажите, что проективное преобразование P плоскости, переводящее бесконечно удаленную прямую в бесконечно удаленную прямую, является аффинным.
б) Докажите, что если точки A, B, C, D лежат па прямой, параллельной исключительной прямой проективного преобразования P плоскости $ \alpha$, то P(A)P(B) : P(C)P(D) = AB : CD.
в) Докажите, что если проективное преобразование P переводит параллельные прямые l1 и l2 в параллельные прямые, то либо P аффинно, либо его исключительная прямая параллельна прямым l1 и l2.
г) Пусть P — взаимно однозначное преобразование множества всех конечных и бесконечных точек плоскости, которое каждую прямую переводит в прямую. Докажите, что P проективно.

ВверхВниз   Решение


Внутри треугольника $ABC$ на биссектрисе угла $A$ выбрана произвольная точка $J$. Лучи $BJ$ и $CJ$ пересекают стороны $AC$ и $AB$ в точках $K$ и $L$ соответственно. Касательная к описанной окружности треугольника $AKL$ в точке $A$ пересекает прямую $BC$ в точке $P$. Докажите, что $PA=PJ$.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 2]      



Задача 115862

Темы:   [ Вписанные и описанные окружности ]
[ Центральное проектирование ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
[ Теоремы Чевы и Менелая ]
[ Теорема Стюарта ]
Сложность: 4
Классы: 8,9,10,11

В треугольнике ABC  M – точка пересечения медиан, I – центр вписанной окружности, A1 и B1 – точки касания этой окружности со сторонами BC и AC, G – точка пересечения прямых AA1 и BB1. Докажите, что угол CGI прямой тогда и только тогда, когда   GM || AB.

Прислать комментарий     Решение

Задача 67005

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Центральное проектирование ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 9,10,11

Внутри треугольника $ABC$ на биссектрисе угла $A$ выбрана произвольная точка $J$. Лучи $BJ$ и $CJ$ пересекают стороны $AC$ и $AB$ в точках $K$ и $L$ соответственно. Касательная к описанной окружности треугольника $AKL$ в точке $A$ пересекает прямую $BC$ в точке $P$. Докажите, что $PA=PJ$.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .