Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 149]
В ромб ABCD вписана окружность радиуса R, касающаяся стороны
AD в точке M и пересекающая отрезок MC в точке N такой,
что MN = 2NC. Найдите углы и площадь ромба.
|
|
Сложность: 4 Классы: 9,10,11
|
Дан неравнобедренный треугольник $ABC$. Выберем произвольную окружность ω, касающуюся описанной окружности Ω треугольника $ABC$ внутренним образом в точке $B$ и не пересекающую прямую $AC$. Отметим на ω точки $P$ и $Q$ так, чтобы прямые $AP$ и $CQ$ касались ω, а отрезки $AP$ и $CQ$ пересекались внутри треугольника $ABC$. Докажите, что все полученные таким образом прямые $PQ$ проходят через одну фиксированную точку, не зависящую от выбора окружности ω.
Дан четырёхугольник ABCD, вписанный в окружность ω. Касательная к ω, проведённая через точку A, пересекает продолжение стороны BC за точку B в точке K, а касательная к ω, проведённая через точку B, пересекает продолжение стороны AD за точку A в точке M. Известно, что AM = AD и BK = BC. Докажите, что ABCD – трапеция.
На медиане CD треугольника ABC отмечена точка E.
Окружность S1, проходящая через точку E и касающаяся
прямой AB в точке A, пересекает сторону AC в точке M.
Окружность S2, проходящая через точку E и касающаяся
прямой AB в точке B, пересекает сторону BC в точке N.
Докажите, что описанная окружность треугольника CMN касается окружностей S1 и S2.
Две окружности касаются друг друга. В большую из
них вписан равносторонний треугольник, из вершин
которого проведены касательные к меньшей. Докажите,
что длина одной из этих касательных равна сумме
длин двух других.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 149]