Страница:
<< 77 78 79 80
81 82 83 >> [Всего задач: 512]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Средняя линия, параллельная стороне $AC$ треугольника $ABC$, пересекает его описанную окружность в точках $X$ и $Y$. Пусть $I$ – центр вписанной окружности треугольника $ABC$, а $D$ – середина дуги $AC$, не содержащей точку $B$. На отрезке $DI$ отметили точку $L$ такую, что $DL=BI/2$. Докажите, что из точек $X$ и $Y$ отрезок $IL$ виден под равными углами.
|
|
Сложность: 4- Классы: 8,9,10
|
Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, CD и DE равны соответственно a, b и c.
Найдите расстояние от вершины A до прямой BE.
Дан прямоугольный треугольник ABC с катетами AC = 3 и BC = 4. Через точку C проведена прямая, лежащая вне треугольника и образующая с катетами углы, равные 45°. Найдите радиус окружности, проходящей через точки A, B и касающейся этой прямой.
Внутри треугольника ABC с острыми углами при вершинах A и C взята точка K, причём ∠AKB = 90°,
∠CKB = 180° – ∠C.
В каком отношении прямая BK делит сторону AC, если высота, опущенная на AC,
делит эту сторону в отношении λ, считая от вершины A?
[Точка Жергона]
|
|
Сложность: 4- Классы: 8,9
|
В треугольник вписана окружность. Точки касания соединены с противоположными вершинами треугольника.
Докажите, что полученные отрезки пересекаются в одной точке (точка Жергона).
Страница:
<< 77 78 79 80
81 82 83 >> [Всего задач: 512]