ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны три различных ненулевых числа. Петя и Вася составляют квадратные уравнения, подставляя эти числа в качестве коэффициентов, но каждый раз в новом порядке. Если у уравнения есть хотя бы один корень, то Петя получает фантик, а если ни одного, то фантик достаётся Васе. Первые три фантика достались Пете, а следующие два — Васе. Можно ли определить, кому достанется последний, шестой фантик? Решение |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 965]
Каждое неотрицательное целое число представимо, причём единственным образом, в виде где x и y – целые неотрицательные числа. Докажите это.
Определить коэффициенты, которые будут стоять при x17 и x18 после раскрытия скобок и приведения подобных членов в выражении (1 + x5 + x7)20.
Доказать, что если то x4 + a1x³ + a2x² + a3x + a4 делится на (x – x0)².
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 965] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|