ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Для произвольного числа $x$ рассмотрим сумму $$Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\ldots+\left\lfloor\frac{x}{10000}\right\rfloor.$$ Найдите разность $Q(2023) – Q(2022)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)

   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 416]      



Задача 109834

Темы:   [ Рациональные и иррациональные числа ]
[ Теория графов (прочее) ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 5-
Классы: 9,10,11

Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение – рациональное число.
Докажите, что квадраты всех чисел рациональны.

Прислать комментарий     Решение

Задача 35575

Темы:   [ Теорема о промежуточном значении. Связность ]
[ Выпуклые многоугольники ]
[ Поворот помогает решить задачу ]
[ Соображения непрерывности ]
Сложность: 5
Классы: 9,10,11

Дана выпуклая фигура и точка A внутри нее. Докажите, что найдется хорда (т.е. отрезок, соединяющий две граничные точки выпуклой фигуры), проходящая через точку A и делящаяся точкой A пополам.
Прислать комментарий     Решение


Задача 66202

Темы:   [ Рациональные и иррациональные числа ]
[ Итерации ]
[ Двоичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 5
Классы: 10,11

Дано иррациональное число α,  0 < α < ½.  По нему определяется новое число α1 как меньшее из двух чисел 2α и  1 – 2α.  По этому числу аналогично определяется α2, и так далее.
  а) Докажите, что  αn < 3/16  для некоторого n .
  б) Может ли случиться, что  αn > 7/40  при всех натуральных n?

Прислать комментарий     Решение

Задача 66578

Тема:   [ Рациональные и иррациональные числа ]
Сложность: 5
Классы: 10,11

Кузнечик прыгает по числовой прямой, на которой отмечены точки $-a$ и $b$. Известно, что $a$ и $b$ — положительные числа, а их отношение иррационально. Если кузнечик находится в точке, которая ближе к $-a$, то он прыгает вправо на расстояние, равное $a$. Если же он находится в середине отрезка $[-a;b]$ или в точке, которая ближе к $b$, то он прыгает влево на расстояние, равное $b$. Докажите, что независимо от своего начального положения кузнечик в некоторый момент окажется от точки 0 на расстоянии, меньшем $10^{-6}$.
Прислать комментарий     Решение


Задача 67257

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Арифметические функции (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Для произвольного числа $x$ рассмотрим сумму $$Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\ldots+\left\lfloor\frac{x}{10000}\right\rfloor.$$ Найдите разность $Q(2023) – Q(2022)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
Прислать комментарий     Решение


Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .