ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность радиуса, равного высоте некоторого правильного треугольника, катится по стороне этого треугольника. Доказать, что дуга, высекаемая сторонами треугольника на окружности, всё время равна 60o.

   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 1275]      



Задача 52384

Темы:   [ Вписанный угол равен половине центрального ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3+
Классы: 8,9

Трапеция с высотой h вписана в окружность. Боковая сторона трапеции видна из центра окружности под углом 120o. Найдите среднюю линию трапеции.

Прислать комментарий     Решение


Задача 52426

Темы:   [ Угол между касательной и хордой ]
[ Пересекающиеся окружности ]
Сложность: 3+
Классы: 8,9

Окружности S1 и S2 пересекаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке B, S2 — в точке C. В точках C и B проведены касательные к окружностям, пересекающиеся в точке D. Докажите, что угол BDC не зависит от выбора прямой, проходящей через точку A.

Прислать комментарий     Решение


Задача 53034

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD диагональ BD равна 2, угол C равен 45o, причём прямая CD касается окружности, описанной около треугольника ABD. Найдите площадь параллелограмма ABCD.

Прислать комментарий     Решение


Задача 76516

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Окружность радиуса, равного высоте некоторого правильного треугольника, катится по стороне этого треугольника. Доказать, что дуга, высекаемая сторонами треугольника на окружности, всё время равна 60o.
Прислать комментарий     Решение


Задача 77884

Темы:   [ Вписанный угол (прочее) ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
Сложность: 3+
Классы: 8,9

Доказать, что для любого треугольника отрезок, соединяющий центры вписанной и вневписанной окружностей, делится описанной окружностью пополам.
Прислать комментарий     Решение


Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .