ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана последовательность целых чисел, построенная следующим образом: a1 — произвольное трёхзначное число, a2 — сумма квадратов его цифр, a3 — сумма квадратов цифр числа a2 и т.д. Докажите, что в последовательности a1, a2, a3, ...обязательно встретится либо 1, либо 4.

   Решение

Задачи

Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 1221]      



Задача 73635

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Разбиения на пары и группы; биекции ]
[ Теорема Виета ]
[ Комплексные числа помогают решить задачу ]
[ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 5
Классы: 9,10,11

Сумма тангенсов углов величиной 1°, 5°, 9°, 13°, ..., 173°, 177° равна 45. Докажите это.
Прислать комментарий     Решение


Задача 73693

Темы:   [ Доказательство от противного ]
[ Обратный ход ]
[ Принцип крайнего (прочее) ]
Сложность: 5
Классы: 7,8,9

Треугольная таблица строится по следующему правилу: в верхней её строке написано одно только натуральное число a > 1, а далее под каждым числом k слева пишем число k2 , а справа — число k + 1. Докажите, что в каждой строке таблицы все числа разные.

Например, при a = 2 вторая строка состоит из чисел 4 и 3, третья — из чисел 16, 5, 9 и 4, четвёртая — из чисел 256, 17, 25, 6, 81, 10, 16 и 5.
Прислать комментарий     Решение


Задача 73694

Темы:   [ Числовые таблицы и их свойства ]
[ Перебор случаев ]
Сложность: 5
Классы: 7,8,9

Можно ли расставить цифры 0, 1 и 2 в клетках листа клетчатой бумаги размером 100×100 таким образом, чтобы в каждом прямоугольнике размером 3×4, стороны которого идут по сторонам клеток, оказалось бы три нуля, четыре единицы и пять двоек?

Прислать комментарий     Решение

Задача 73714

Темы:   [ Ортоцентр и ортотреугольник ]
[ Итерации ]
[ Неравенства для углов треугольника ]
[ Геометрические интерпретации в алгебре ]
[ Признаки подобия ]
[ Сжимающие отображения и неподвижные точки ]
[ Композиции движений. Теорема Шаля ]
Сложность: 5
Классы: 9,10,11

Для каждого непрямоугольного треугольника T обозначим через T1 треугольник, вершинами которого служат основания высот треугольника T; через T2 – треугольник, вершинами которого служат основания высот треугольника T1; аналогично определим треугольники T3, T4 и так далее. Каким должен быть треугольник T, чтобы
  а) треугольник T1 был остроугольным?
  б) в последовательности T1, T2, T3, ... встретился прямоугольный треугольник Tn (и таким образом треугольник Tn+1 не определён)?
  в) треугольник T3 был подобен треугольнику T?
  г) Для каждого натурального числа n выясните, сколько существует неподобных друг другу треугольников T, для которых треугольник Tn подобен треугольнику Т.

Прислать комментарий     Решение

Задача 77948

Темы:   [ Последовательности (прочее) ]
[ Перебор случаев ]
Сложность: 5
Классы: 9,10

Дана последовательность целых чисел, построенная следующим образом: a1 — произвольное трёхзначное число, a2 — сумма квадратов его цифр, a3 — сумма квадратов цифр числа a2 и т.д. Докажите, что в последовательности a1, a2, a3, ...обязательно встретится либо 1, либо 4.
Прислать комментарий     Решение


Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .