Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

а) Пусть $ \varepsilon$ = $ {\frac{1}{2}}$ + $ {\frac{i\sqrt{3}}{2}}$. Докажите, что точки a, b, c являются вершинами правильного треугольника тогда и только тогда, когда a + $ \varepsilon^{2}_{}$b + $ \varepsilon^{4}_{}$c = 0 или a + $ \varepsilon^{4}_{}$b + $ \varepsilon^{2}_{}$c = 0.
б) Докажите, что точки a, b, c являются вершинами правильного треугольника тогда и только тогда, когда a2 + b2 + c2 = ab + bc + ac.

Вниз   Решение


Во вписанном четырёхугольнике ABCD прямая Симсона точки A относительно треугольника BCD перпендикулярна прямой Эйлера треугольника BCD. Докажите, что прямая Симсона точки B относительно треугольника ACD перпендикулярна прямой Эйлера треугольника ACD.

ВверхВниз   Решение


Основанием параллелепипеда служит квадрат. Одна из вершин верхнего основания равноудалена от всех вершин нижнего основания и находится на расстоянии b от этого основания. Сторона основания равна a . Найдите полную поверхность параллелепипеда.

ВверхВниз   Решение


В окружность вписаны две равнобедренные трапеции с соответственно параллельными сторонами. Докажите, что диагональ одной из них равна диагонали другой трапеции.

ВверхВниз   Решение


Целые ненулевые числа a1, a2, ..., an таковы, что равенство

выполнено при всех целых значениях x, входящих в область определения дроби, стоящей в левой части.
  a) Докажите, что число n чётно.
  б) При каком наименьшем n такие числа существуют?

ВверхВниз   Решение


Постройте треугольник по высоте, опущенной на одну из сторон, и медианам, проведённым к двум другим сторонам.

ВверхВниз   Решение


Трёхчлен  ax² + bx + c  при всех целых x является точным квадратом. Доказать, что тогда  ax² + bx + c = (dx + e)².

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 51]      



Задача 98078

Темы:   [ Системы точек ]
[ Соображения непрерывности ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4
Классы: 9,10,11

На плоскости расположено 20 точек, никакие три из которых не лежат на одной прямой, из них 10 синих и 10 красных.
Докажите, что можно провести прямую, по каждую сторону которой лежит пять синих и пять красных точек.

Прислать комментарий     Решение

Задача 56789

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Соображения непрерывности ]
[ Поворот помогает решить задачу ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 5-
Классы: 9,10,11

Докажите, что любой выпуклый многоугольник можно разрезать двумя взаимно перпендикулярными прямыми на четыре фигуры равной площади.

Прислать комментарий     Решение

Задача 98226

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Соображения непрерывности ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Перестройки ]
Сложность: 5-
Классы: 8,9

Рассматривается произвольный многоугольник (возможно, невыпуклый).
  а) Всегда ли найдётся хорда этого многоугольника, которая делит его площадь пополам?
  б) Докажите, что найдётся такая хорда, что площадь каждой из частей, на которые она разбивает многоугольник, не меньше чем ⅓ площади всего многоугольника.

  в) Можно ли в пункте б) заменить число ⅓ на большее?
(Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур).

Прислать комментарий     Решение

Задача 98353

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Соображения непрерывности ]
[ Наименьшая или наибольшая площадь (объем) ]
[ Выпуклые многоугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Контуры выпуклых многоугольников F и G не имеют общих точек, причём G расположен внутри F. Хорду многоугольника F – отрезок, соединяющий две точки контура F, назовём опорной для G, если она пересекается с G только по точкам контура: содержит либо только вершину, либо сторону G.
  а) Докажите, что найдётся опорная хорда, середина которой принадлежит контуру G.
  б) Докажите, что найдутся две такие хорды.

Прислать комментарий     Решение

Задача 78047

Темы:   [ Квадратный трехчлен (прочее) ]
[ Соображения непрерывности ]
Сложность: 5
Классы: 9,10,11

Трёхчлен  ax² + bx + c  при всех целых x является точным квадратом. Доказать, что тогда  ax² + bx + c = (dx + e)².

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .