ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи С центрами в вершинах прямоугольника построены четыре окружности с радиусами r1, r2, r3, r4, причём r1 + r3 = r2 + r4 < d; d — диагональ прямоугольника. Проводятся две пары внешних касательных к окружностям 1, 3 и 2, 4. Доказать, что в четырёхугольник, образованный этими четырьмя прямыми, можно вписать окружность. Решение |
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 769]
Докажите, что если существует окружность, касающаяся всех сторон выпуклого четырёхугольника ABCD, и окружность, касающаяся продолжений всех его сторон, то диагонали такого четырёхугольника взаимно перпендикулярны.
На продолжениях сторон CA и AB треугольника ABC за точки A и B соответственно отложены отрезки AE = BC и BF = AC. Окружность касается отрезка BF в точке N, стороны BC и продолжения стороны AC за точку C. Точка M – середина отрезка EF. Докажите, что прямая MN параллельна биссектрисе угла A.
Центры O1 , O2 и O3 трех непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек O1 , O2 и O3 проведены касательные к данным окружностям так, как показано на рисунке. Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих отрезков.
Окружность, диаметр которой равен , проходит через соседние вершины A и B прямоугольника ABCD. Длина касательной, проведённой из точки C к окружности, равна 3, AB = 1. Найдите все возможные значения, которые может принимать длина стороны BC.
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|