ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что ни для каких векторов a, b, c не могут одновременно выполняться три неравенства

|a| < |bc|,  |b| < |ca|,  |c| < |ab|.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 239]      



Задача 78243

Темы:   [ Псевдоскалярное произведение ]
[ Вычисление площадей ]
Сложность: 3+
Классы: 9,10

Дан треугольник ABC и точка O. M1, M2, M3 — центры тяжести треугольников OAB, OBC, OCA соответственно. Доказать, что площадь треугольника M1M2M3 равна 1/9 площади ABC.
Прислать комментарий     Решение


Задача 78255

Темы:   [ Векторы (прочее) ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 3+
Классы: 11

Известно, что Z1 + ... + Zn = 0, где Zk — комплексные числа. Доказать, что среди этих чисел найдутся два таких, что разность их аргументов больше или равна 120o.
Прислать комментарий     Решение


Задача 78264

Темы:   [ Векторы (прочее) ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Комплексные числа в геометрии ]
Сложность: 3+
Классы: 10,11

Точки A и B движутся равномерно и с равными угловыми скоростями по окружностям O1 и O2 соответственно (по часовой стрелке). Доказать, что вершина C правильного треугольника ABC также движется равномерно по некоторой окружности.
Прислать комментарий     Решение


Задача 79431

Темы:   [ Векторы ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 3+
Классы: 9

На сторонах треугольника ABC вне его построены правильные треугольники ABC1, BCA1 и CAB1. Доказать, что $ \overrightarrow{AA_1}$ + $ \overrightarrow{BB_1}$ + $ \overrightarrow{CC_1}$ = $ \overrightarrow{0}$.
Прислать комментарий     Решение


Задача 79503

Темы:   [ Неравенства с векторами ]
[ Скалярное произведение ]
Сложность: 3+
Классы: 10,11

Докажите, что ни для каких векторов a, b, c не могут одновременно выполняться три неравенства

|a| < |bc|,  |b| < |ca|,  |c| < |ab|.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .