ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости расположено n На отрезке длиной 1 расположены попарно не пересекающиеся
отрезки, сумма длин которых равна p. Обозначим эту систему
отрезков A. Пусть B — дополнительная система отрезков
(отрезки систем A и B не имеют общих внутренних точек и
полностью покрывают данный отрезок). Докажите, что существует
параллельный перенос T, для которого пересечение B и T(A)
состоит из отрезков, сумма длин которых не меньше p(1 - p)/2.
Два пирата, Билл и Джон, имея каждый по 74 золотые монеты, решили сыграть в такую игру: они по очереди будут выкладывать на стол монеты, за один ход – одну, две или три, а выиграет тот, кто положит на стол сотую по счёту монету. Начинает Билл. Кто может выиграть в такой игре, независимо от того, как будет действовать соперник? Доказать, что существует бесконечно много натуральных чисел,
не представимых в виде Даны точка X и правильный треугольник ABC. Докажите, что из отрезков
XA, XB и XC можно составить треугольник, причем этот треугольник
вырожденный тогда и только тогда, когда точка X лежит на описанной окружности
треугольника ABC (Помпею).
а) Стороны угла с вершиной C касаются окружности
в точках A и B. Из точки P, лежащей на окружности,
опущены перпендикуляры PA1, PB1 и PC1 на прямые BC, CA
и AB. Докажите, что
PC12 = PA1 . PB1 и
PA1 : PB1 = PB2 : PA2.
Миша стоит в центре круглой лужайке радиуса 100 метров. Каждую минуту он делает шаг длиной 1 метр. Перед каждым шагом он объявляет направление, в котором хочет шагнуть. Катя имеет право заставить его сменить направление на противоположное. Может ли Миша действовать так, чтобы в какой-то момент обязательно выйти с лужайки, или Катя всегда сможет ему помешать? Через вершины А и С треугольника АВС проведены прямые, перпендикулярные биссектрисе угла АВС. Они пересекают прямые СВ и ВА в точках К и М соответственно. Найдите длину АВ, если ВМ = 8 см, KC = 1 см и АВ > ВС. |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 5292]
Через вершины А и С треугольника АВС проведены прямые, перпендикулярные биссектрисе угла АВС. Они пересекают прямые СВ и ВА в точках К и М соответственно. Найдите длину АВ, если ВМ = 8 см, KC = 1 см и АВ > ВС.
В выпуклом четырёхугольнике ABCD точки E, F и G – середины сторон AB, BC и AD соответственно, причём GE ⊥ AB, GF ⊥ BC. Найдите угол ACD.
Барон Мюнхаузен утверждает, что пустил шар от борта бильярда, имеющего форму правильного треугольника, так, что тот, отражаясь от бортов, прошёл через некоторую точку три раза в трёх различных направлениях и вернулся в исходную точку. Могут ли слова барона быть правдой? (Отражение шара от борта происходит по закону "угол падения равен углу отражения".)
Квадрат ABCD со стороной 2 и квадрат DEFK со стороной 1 стоят рядом на верхней стороне AK квадрата AKLM со стороной 3. Между парами точек A и E, B и F, C и K, D и L натянуты паутинки. Паук поднимается снизу вверх по маршруту AEFB и спускается по маршруту CKDL. Какой маршрут короче?
Медиана AD, высота BE и биссектриса CF треугольника ABC пересекаются в точке O. Известно, что BO = CO.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 5292]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке