Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Положительные числа х1, ..., хk удовлетворяют неравенствам  
  а) Докажите, что  k > 50.
  б) Построить пример таких чисел для какого-нибудь k.
  в) Найти минимальное k, для которого пример возможен.

Вниз   Решение


Максимальное время работы на одном тесте: 1 секунда

На плоскости задано N векторов - направленных отрезков, для каждого из которых известны координаты начала и конца (вектор, у которого начало и конец совпадают, называется нуль-вектором, можно считать, что нуль-вектор лежит на любой прямой, которая через него проходит). Введем следующие три операции над направленными отрезками на плоскости:

1) Направленные отрезки ненулевой длины, лежащие на пересекающихся прямых, можно заменить на их сумму, причем единственным образом. В этом случае отрезки переносятся вдоль своих прямых так, чтобы их начала совпадали с точкой пересечения прямых, и складываются по правилу сложения векторов (правилу параллелограмма, при этом началом результирующего вектора является точка пересечения прямых):

2) Направленные отрезки, лежащие на одной прямой, также можно заменить на их сумму. Для этого один из отрезков (любой) нужно перенести в начало второго из них и сложить по правилу сложения векторов на прямой:

Это правило применимо и в случае, когда один из векторов, или даже оба, являются нуль-векторами.

Заметим, что если складываемые векторы противоположно направлены и имеют одну и ту же длину, то результатом их сложения является нуль-вектор.

3) В любой точке плоскости можно породить два противоположно направленных отрезка равной (в том числе и нулевой) длины:

Будем говорить, что некоторая система векторов B эквивалентна системе A, если от системы A можно перейти к B с помощью конечной последовательности перечисленных выше операций.

Требуется получить любую систему векторов, эквивалентную заданной, состоящую из минимально возможного числа векторов.

Формат входных данных

В первой строке входного файла f.in записано число N - количество заданных векторов (1 < N ≤ 1000). В каждой из следующих N строк через пробел записаны четыре числа, обозначающие координаты начала и конца каждого из векторов соответственно. Все координаты - целые числа, по модулю не превосходящие 1000.

Формат выходных данных

В первой строке входного файла f.out следует записать число M - количество векторов в полученной системе (1 ≤ MN). В каждой из следующих M строк через пробел должны находиться четыре числа, обозначающие координаты начала и конца каждого из векторов соответственно. Все координаты - вещественные числа, записанные с 6 цифрами после точки.

Примеры

f.in

f.out

3

1 1 1 3

3 3 3 1

5 1 7 1

1

3.000000 3.000000 5.000000 3.000000

2

2 4 5 10

-2 -4 -5 -10

1

2.000000 4.000000 2.000000 4.000000

ВверхВниз   Решение


Представить гомотетию    с центром в точке i с коэффициентом 2 в виде композиции параллельного переноса и гомотетии с центром в точке O.

ВверхВниз   Решение


Каким точкам фазовой плоскости соответствуют квадратные трёхчлены, не имеющие корней?

ВверхВниз   Решение


Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30o . Найдите радиусы сфер.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 84]      



Задача 87131

Темы:   [ Касающиеся сферы ]
[ Касательные к сферам ]
Сложность: 3
Классы: 10,11

Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30o . Найдите радиусы сфер.
Прислать комментарий     Решение


Задача 109272

Темы:   [ Касающиеся сферы ]
[ Конус ]
Сложность: 3
Классы: 10,11

Три сферы радиуса 1 попарно касаются друг друга и некоторой плоскости. Основание конуса расположено в этой плоскости. Все три сферы касаются боковой поверхности конуса внешним образом. Найдите радиус основания конуса, если высота конуса равна 2.
Прислать комментарий     Решение


Задача 109273

Темы:   [ Касающиеся сферы ]
[ Конус ]
Сложность: 3
Классы: 10,11

Три шара одинакового радиуса попарно касаются друг друга и некоторой плоскости. Основание конуса расположено в этой плоскости. Все три сферы касаются боковой поверхности конуса внешним образом. Найдите угол при вершине осевого сечения конуса, если высота конуса равна диаметру шара.
Прислать комментарий     Решение


Задача 109274

Темы:   [ Касающиеся сферы ]
[ Правильная пирамида ]
Сложность: 3
Классы: 10,11

Сторона основания правильной четырёхугольной пирамиды равна a . Центры двух шаров радиуса r , содержащихся внутри пирамиды, расположены на её высоте. Первый шар касается плоскости основания пирамиды, второй шар касается первого и плоскостей всех боковых граней пирамиды. Найдите высоту пирамиды.
Прислать комментарий     Решение


Задача 109318

Темы:   [ Касающиеся сферы ]
[ Касательные к сферам ]
Сложность: 3
Классы: 10,11

Стороны треугольника равны a, b, c. Три шара попарно касаются друг друга и плоскости треугольника в его вершинах. Найдите радиусы шаров.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 84]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .