ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи


В прямом параллелепипеде ABCDA1B1C1D1 с основаниями ABCD и A1B1C1D1 известно, что AB = 29, AD = 36, BD = 25, AA1 = 48. Найдите площадь сечения AB1C1D.

   Решение

Задачи

Страница: << 84 85 86 87 88 89 90 >> [Всего задач: 694]      



Задача 79342

Темы:   [ Перпендикулярные прямые в пространстве ]
[ Параллельность прямых и плоскостей ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 3+
Классы: 10,11

В пространстве расположено n отрезков, никакие три из которых не параллельны одной плоскости. Для любых двух отрезков прямая, соединяющая их середины, перпендикулярна обоим отрезкам. При каком наибольшем n это возможно?
Прислать комментарий     Решение


Задача 79521

Темы:   [ Правильный (равносторонний) треугольник ]
[ Углы между прямыми и плоскостями ]
[ Проектирование помогает решить задачу ]
Сложность: 3+
Классы: 11

Углы, образованные сторонами правильного треугольника с некоторой плоскостью, равны α, β и γ. Доказать, что одно из чисел sin α, sin β, sin γ равно сумме двух других.
Прислать комментарий     Решение


Задача 116916

Темы:   [ Тетраэдр (прочее) ]
[ Перпендикулярность прямой и плоскости (прочее) ]
[ Сферы (прочее) ]
Сложность: 3+
Классы: 9,10

Дан тетраэдр ABCD. Точка X выбрана вне тетраэдра так, что отрезок XD пересекает грань ABC во внутренней точке. Обозначим через A', B', C' проекции точки D на плоскости XBC, XCA, XAB соответственно. Докажите, что  A'B' + B'C' + C'A' < DA + DB + DC.

Прислать комментарий     Решение

Задача 87459

Темы:   [ Площадь сечения ]
[ Теорема о трех перпендикулярах ]
Сложность: 3+
Классы: 10,11


В прямом параллелепипеде ABCDA1B1C1D1 с основаниями ABCD и A1B1C1D1 известно, что AB = 29, AD = 36, BD = 25, AA1 = 48. Найдите площадь сечения AB1C1D.

Прислать комментарий     Решение


Задача 87027

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Расстояние между скрещивающимися прямыми ]
[ Достроение тетраэдра до параллелепипеда ]
[ Объем помогает решить задачу ]
[ Объем тетраэдра и пирамиды ]
[ Объем параллелепипеда ]
Сложность: 4-
Классы: 10,11

На скрещивающихся прямых l и m взяты отрезки AB и CD соответственно. Докажите, что объём пирамиды ABCD не зависит от положения отрезков AB и CD на этих прямых. Найдите этот объём, если AB = a , CD = b , а угол и расстояние между прямыми l и m равны соответственно α и c .
Прислать комментарий     Решение


Страница: << 84 85 86 87 88 89 90 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .