Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Решите уравнение  x³ + x – 2 = 0  подбором и по формуле Кардано.

Вниз   Решение


Докажите, что произвольное уравнение третьей степени  z³ + Az² + Bz + C = 0  при помощи линейной замены переменной  z = x + β  можно привести к виду  x3 + px + q = 0.

ВверхВниз   Решение


Найдите сумму всех плоских углов треугольной пирамиды.

ВверхВниз   Решение


Известно, что     где  x > 0,  y > 0,  z > 0.  Докажите, что  

ВверхВниз   Решение


Учитель выбрал 10 подряд идущих натуральных чисел и сообщил их Пете и Васе. Каждый мальчик должен разбить эти 10 чисел на пары, подсчитать произведение чисел в каждой паре, а затем сложить полученные пять произведений. Докажите, что мальчики могут сделать это так, чтобы разбиения на пары у них не были одинаковыми, но итоговые суммы совпадали.

ВверхВниз   Решение


Петя сложил 10 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат?

ВверхВниз   Решение


Существует ли тетраэдр, высоты которого равны 1, 2, 3 и 6?

ВверхВниз   Решение


Плоскость, заданная уравнением x+2y+3z=0, разбивает пространство на два полупространства. Узнайте, в одном или в разных полупространствах лежат точки (1,2,-2) и (2,1,-1).

ВверхВниз   Решение


Требуется вычислить количество N-значных чисел в системе счисления с основанием K, таких что их запись не содержит двух подряд идущих нулей.
Ограничения: 2 <= K <= 10, N + K <= 18.
Формат входных данных
Числа N и K в десятичной записи, разделенные пробелом или переводом строки.
Формат выходных данных
Искомое число в десятичной записи.

ВверхВниз   Решение


Можно ли разместить в пространстве четыре свинцовых шара и точечный источник света так, чтобы каждый исходящий из источника света луч пересекал хотя бы один из шаров?

ВверхВниз   Решение


Задан массив X [1:m]. Найти длину k самой длинной ''пилообразной (зубьями вверх)'' последовательности идущих подряд чисел:

X [p+1]< X [p+2]>X [p+3]<...> X[p+k].

ВверхВниз   Решение


Найдите последнюю цифру числа 19891989.

ВверхВниз   Решение


Автор: Темиров Т.

Пусть a – заданное вещественное число, n – натуральное число,  n > 1.
Найдите все такие x, что сумма корней n-й степени из чисел  xn – an  и  2an – xn  равна числу a.

ВверхВниз   Решение


На плоскости отмечены три точки, служащие изображениями (параллельными проекциями) трёх последовательных вершин правильного шестиугольника. Постройте изображения остальных вершин шестиугольника.

ВверхВниз   Решение


В круг вписан правильный треугольник. Найдите отношение объёмов тел, полученных от вращения круга и треугольника вокруг диаметра, проходящего через вершину треугольника. В ответе укажите отношение меньшего объёма к большему (с точностью до сотых).

ВверхВниз   Решение


На плоскости даны изображение (параллельная проекция) плоского четырёхугольника ABCD и точки M , не лежащей в его плоскости. Постройте изображение прямой, по которой пересекаются плоскости ABM и CDM .

ВверхВниз   Решение


В шаре радиуса просверлено цилиндрическое отверстие; ось цилиндра проходит через центр шара, а диаметр основания цилиндра равен радиусу шара. Найдите объём оставшейся части шара.

ВверхВниз   Решение


Ребро правильного октаэдра равно a . Найдите кратчайшее расстояние по поверхности октаэдра между серединами двух его параллельных рёбер.

ВверхВниз   Решение


На рёбрах AB , BC и BD пирамиды ABCD взяты точки K , L и M соответственно. Постройте точку пересечения плоскостей ACM , CDK и ADL .

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 87619

Темы:   [ Построение сечений ]
[ Подобие ]
Сложность: 3
Классы: 10,11

Ребро BD пирамиды ABCD перпендикулярно плоскости ADC . Докажите, что сечением этой пирамиды плоскостью, проходящей через точку D и середины рёбер AB и BC , является треугольник, подобный треугольнику ABC . Чему равен коэффициент подобия?
Прислать комментарий     Решение


Задача 87620

Темы:   [ Построение сечений ]
[ Подобие ]
Сложность: 3
Классы: 10,11

Докажите, что сечением пирамиды ABCD плоскостью, параллельной рёбрам AC и BD , является параллелограмм, причём для одной такой плоскости этот параллелограмм будет ромбом. Найдите сторону этого ромба, если AC = a , BD = b .
Прислать комментарий     Решение


Задача 87622

Темы:   [ Построение сечений ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

На рёбрах AB , BC и BD пирамиды ABCD взяты точки K , L и M соответственно. Постройте точку пересечения плоскостей ACM , CDK и ADL .
Прислать комментарий     Решение


Задача 111127

Темы:   [ Построение сечений ]
[ Тетраэдр (прочее) ]
[ Призма (прочее) ]
Сложность: 3
Классы: 10,11

Через точку на ребре треугольной пирамиды проведены две плоскости, параллельные двум граням пирамиды. Эти плоскости отсекают две треугольные пирамиды. Разрежьте оставшийся многогранник на две треугольные призмы.
Прислать комментарий     Решение


Задача 111153

Темы:   [ Построение сечений ]
[ Правильная призма ]
Сложность: 4
Классы: 10,11

На ребре AC правильной треугольной призмы ABCA1B1C1 взята точка K так, что AK= , CK= . Через точку K проведена плоскость, образующая с плоскостью ABC угол arctg и рассекающая призму на два многогранника, площади поверхностей которых равны. Найдите объём призмы, если известно, что около одного из этих многогранников можно описать сферу, а около другого – нет.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .