Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединён ровно с пятью другими?

Вниз   Решение


Можно ли нарисовать на плоскости 9 отрезков так, чтобы каждый пересекался ровно с тремя другими?

ВверхВниз   Решение


Вневписанная окружность, соответствующая вершине A прямоугольного треугольника ABC  (∠B = 90°),  касается продолжений сторон AB, AC в точках A1, A2 соответственно; аналогично определим точки C1, C2. Докажите, что перпендикуляры, опущенные из точек A, B, C на прямые C1C2, A1C1, A1A2 соответственно, пересекаются в одной точке.

ВверхВниз   Решение


Сколько существует целых чисел от 0 до 999999, в десятичной записи которых нет двух стоящих рядом одинаковых цифр?

ВверхВниз   Решение


Докажите, что если радиус вневписанной окружности равен полупериметру треугольника, то этот треугольник — прямоугольный.

ВверхВниз   Решение


На сторонах некоторого многоугольника расставлены стрелки.
Докажите, что число вершин, в которые входят две стрелки, равно числу вершин, из которых выходят две стрелки.

ВверхВниз   Решение


Докажите, что при  a, b, c ≥ 0  имеет место неравенство  (ab + bc + ca)² ≥ 3abc(a + b + c).

ВверхВниз   Решение


Сумма двух неотрицательных чисел равна 10. Какое максимальное и какое минимальное значение может принимать сумма их квадратов?

ВверхВниз   Решение


В трапеции ABCD меньшая диагональ BD перпендикулярна к основаниям AD и BC, сумма острых углов A и C равна 90°. Основания  AD = a,  BC = b.
Найдите боковые стороны трапеции.

ВверхВниз   Решение


Какие восемь монет нужно взять, чтобы с их помощью можно было бы без сдачи заплатить любую сумму от 1 коп. до 1 руб.?
(В хождении были монеты в 1, 3, 5, 10, 20 и 50 коп.)

ВверхВниз   Решение


Точка E лежит на продолжении стороны AC правильного треугольника ABC за точку C. Точка K – середина отрезка CE. Прямая, проходящая через точку A перпендикулярно AB, и прямая, проходящая через точку E перпендикулярно BC, пересекаются в точке D. Найдите углы треугольника BKD.

ВверхВниз   Решение


Из вершины C остроугольного треугольника ABC опущена высота CH, а из точки H опущены перпендикуляры HM и HN на стороны BC и AC соответственно. Докажите, что треугольники MNC и ABC подобны.

ВверхВниз   Решение


Сто гномов, веса которых равны 1, 2, 3, ..., 100 фунтов, собрались на левом берегу реки. Плавать они не умеют, но на этом же берегу находится гребная лодка грузоподъемностью 100 фунтов. Из-за течения плыть обратно трудно, поэтому у каждого гнома хватит сил грести с правого берега на левый не более одного раза (грести в лодке достаточно любому из гномов; гребец в течение одного рейса не меняется). Смогут ли все гномы переправиться на правый берег?

ВверхВниз   Решение


В ряд лежат 100 внешне одинаковых монет. Среди них ровно 26 фальшивых, причём они лежат подряд. Настоящие монеты весят одинаково, фальшивые – не обязательно одинаково, но они легче настоящих. Как за одно взвешивание на двухчашечных весах без гирь найти хотя бы одну фальшивую монету?

ВверхВниз   Решение


Произведение 22 целых чисел равно 1. Докажите, что их сумма не равна нулю.

ВверхВниз   Решение


Автор: Белухов Н.

Вершины треугольника $DEF$ лежат на разных сторонах треугольника $ABC$. Касательные, проведенные из центра вписанной в треугольник $DEF$ окружности к вневписанным окружностям треугольника $ABC$, равны. Докажите, что $4S_{DEF} \ge S_{ABC}$.

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность. Диагональ AC является биссектрисой угла BAD и пересекается с диагональю BD в точке K.
Найдите KC, если  BC = 4,  а  AK = 6.

ВверхВниз   Решение


У продавца имеются чашечные весы с неравными плечами и гири. Сначала он взвешивает товар на одной чашке, затем – на другой и берёт средний вес. Не обманывает ли он?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 155]      



Задача 66891

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 8,9,10

У Тани есть 4 одинаковые с виду гири, массы которых равны 1001, 1002, 1004 и 1005 г (неизвестно, где какая), и чашечные весы (показывающие, какая из двух чаш перевесила или что имеет место равенство). Может ли Таня за 4 взвешивания гарантированно определить, где какая гиря? (Следующее взвешивание выбирается по результатам прошедших.)
Прислать комментарий     Решение


Задача 67068

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 7,8,9,10,11

На Поле Чудес выросло 8 золотых монет, но стало известно, что ровно три из них фальшивые. Все настоящие монеты весят одинаково, все фальшивые тоже, но они легче настоящих. Лиса Алиса и Буратино собрали монеты и стали их делить. Алиса собирается отдать Буратино три монеты, но он хочет сначала проверить, все ли они настоящие. Сможет ли он сделать это за два взвешивания на чашечных весах без гирь?
Прислать комментарий     Решение


Задача 77901

Темы:   [ Взвешивания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Имеется 555 гирь весом: 1 г, 2 г, 3 г, 4 г,...555 г. Разложить их на 3 равные по весу кучи.
Прислать комментарий     Решение


Задача 78729

Темы:   [ Взвешивания ]
[ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8

В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50 штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на 20 г.
Прислать комментарий     Решение


Задача 88292

Темы:   [ Взвешивания ]
[ Неравенство Коши ]
[ Средние величины ]
Сложность: 3
Классы: 7,8

У продавца имеются чашечные весы с неравными плечами и гири. Сначала он взвешивает товар на одной чашке, затем – на другой и берёт средний вес. Не обманывает ли он?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 155]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .