Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 150]
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)
|
|
Сложность: 4 Классы: 8,9,10
|
Даны 1985 множеств, каждое из которых состоит из 45 элементов, причём
объединение любых двух множеств содержит ровно 89 элементов.
Сколько элементов содержит объединение всех этих 1985 множеств?
|
|
Сложность: 4 Классы: 8,9,10
|
В классе 32 ученика. Было организовано 33 кружка, причём каждый кружок
состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику.
|
|
Сложность: 4 Классы: 8,9,10
|
Каждый голосующий на выборах вносит в избирательный бюллетень фамилии
n
кандидатов. На избирательном участке находится
n+1
урна. После выборов
выяснилось, что в каждой урне лежит по крайней мере один бюллетень и
при всяком выборе
(
n+1)
-го бюллетеня по одному из каждой урны
найдется кандидат,
фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что
по крайней мере в одной урне все бюллетени содержат фамилию одного и того же
кандидата.
|
|
Сложность: 4 Классы: 7,8,9
|
Набор из 2003 положительных чисел таков, что для любых двух
входящих в него чисел
a и
b (
a>b ) хотя бы одно из чисел
a+b
или
a-b тоже входит в набор.
Докажите, что если данные числа упорядочить по возрастанию, то
разности между соседними числами окажутся одинаковыми.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 150]