ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сфере отмечено пять точек, никакие три из которых не лежат на большой окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются эквивалентными, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.
  а) Сколько можно нарисовать окружностей, не проходящих через отмеченные точки и не эквивалентных друг другу?
  б) Та же задача для n отмеченных точек.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 34991

Темы:   [ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 4-
Классы: 8,9,10

На прямой дано 50 отрезков.
Докажите, что либо некоторые восемь отрезков имеют общую точку, либо найдутся восемь отрезков, никакие два из которых не имеют общей точки.

Прислать комментарий     Решение

Задача 35538

Темы:   [ Покрытия ]
[ Индукция (прочее) ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 4-
Классы: 9,10,11

Несколько отрезков покрывают отрезок  [0, 1].
Докажите, что среди них можно выбрать несколько непересекающихся отрезков, сумма длин которых не меньше ½.

Прислать комментарий     Решение

Задача 98098

Темы:   [ Окружности на сфере ]
[ Отношение эквивалентности. Классы эквивалентности ]
[ Системы отрезков, прямых и окружностей ]
[ Разные задачи на разрезания ]
Сложность: 4+
Классы: 10,11

На сфере отмечено пять точек, никакие три из которых не лежат на большой окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются эквивалентными, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.
  а) Сколько можно нарисовать окружностей, не проходящих через отмеченные точки и не эквивалентных друг другу?
  б) Та же задача для n отмеченных точек.

Прислать комментарий     Решение

Задача 109455

Темы:   [ Ортогональная проекция (прочее) ]
[ Параллельный перенос ]
[ Движение помогает решить задачу ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 4-
Классы: 10,11

Петя может располагать три отрезка в пространстве произвольным образом. После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так, чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если:
а) три отрезка имеют равные длины?
б) длины двух отрезков равны между собой и не равны длине третьего?
Прислать комментарий     Решение


Задача 73871

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Произвольные многоугольники ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 4+
Классы: 8,9,10

Автор: Фомин С.В.

На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .