Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

По стороне правильного треугольника катится окружность радиуса, равного его высоте. Докажите, что угловая величина дуги, высекаемой на окружности сторонами треугольника, всегда равна 600.

Вниз   Решение


Решить в натуральных числах уравнение:  

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем  AC1 = AB1, BA1 = BC1 и CA1 = CB1. Докажите, что A1, B1 и C1 — точки касания вписанной окружности со сторонами.

ВверхВниз   Решение


Автор: Шевяков В.

Имеются три литровых банки и мерка объемом 100 мл. Первая банка пуста, во второй – 700 мл сладкого чая, в третьей – 800 мл сладкого чая. При этом во второй банке растворено 50 г сахара, а в третьей – 60 г сахара. Разрешается набрать из любой банки полную мерку чая и перелить весь этот чай в любую другую банку. Можно ли несколькими такими переливаниями добиться, чтобы первая банка была пуста, а количество сахара во второй банке равнялось количеству сахара в третьей банке?

ВверхВниз   Решение


Докажите, что  2(x² + y²) ≥ (x + y)²  при любых x и y.

ВверхВниз   Решение


Докажите, что если произведение двух положительных чисел больше их суммы, то сумма больше 4.

ВверхВниз   Решение


Незнайка выписал семь двузначных чисел в порядке возрастания. Затем одинаковые цифры заменил одинаковыми буквами, а разные – разными. Получилось вот что: ХА, АЙ, АХ, ОЙ, ЭМ, ЭЙ, МУ. Докажите, что Незнайка что-то перепутал.

ВверхВниз   Решение


Авторы: Pantaloni V., Southall E.

Король Артур хочет заказать кузнецу новый рыцарский щит по своему эскизу. Король взял циркуль и нарисовал три дуги радиусом $1$ ярд так, как показано на рисунке. Чему равняется площадь щита? Ответ округлите до сотых. Напомним, что площадь круга радиуса $r$ равна $\pi r^2$, $\pi\approx 3,14$.

ВверхВниз   Решение


  а) Докажите, что в таблице

где каждое число равно сумме трёх стоящих над ним чисел, в каждой строке (начиная с третьей) есть чётное число.
  б) В каждой ли строке (кроме первых двух) встречается число, кратное 3?

ВверхВниз   Решение


Один из острых углов прямоугольного треугольника равен 25o. Под каким углом виден каждый его катет из центра описанной окружности?

ВверхВниз   Решение


Натуральные числа от 1 до 100 раскрашены в три цвета: 50 чисел – в красный, 25 чисел – в жёлтый и 25 – в зелёный. Известно, что все красные и жёлтые числа можно разбить на 25 троек так, чтобы в каждой тройке было два красных числа и одно жёлтое, которое больше одного красного и меньше другого. Аналогичное утверждение верно для красных и зелёных чисел. Обязательно ли все 100 чисел можно разбить на 25 четвёрок, в каждой из которых два красных числа, одно жёлтое и одно зелёное, при этом жёлтое и зелёное числа лежат между красными?

ВверхВниз   Решение


Вычислите производящие функции следующих последовательностей:
а)     б)  

ВверхВниз   Решение


Однажды осенью Рассеянный Учёный глянул на свои старинные настенные часы и увидел, что на циферблате уснули три мухи. Первая спала в точности на отметке 12 часов, а две другие так же аккуратно расположились на отметках 2 часа и 5 часов. Учёный произвёл измерения и определил, что часовая стрелка мухам не грозит, а вот минутная сметёт их всех по очереди. Найдите вероятность того, что ровно через 40 минут после того, как Учёный заметил мух, ровно две мухи из трёх были сметены минутной стрелкой.

ВверхВниз   Решение


Постройте равнобедренный треугольник по основанию и радиусу описанной окружности.

ВверхВниз   Решение


На танцплощадке собрались N юношей и N девушек. Сколькими способами они могут разбиться на пары для участия в очередном танце?

ВверхВниз   Решение


Расследуя одно дело, следователь Башковицкий обнаружил, что ключевой свидетель – тот из семьи Петровых, кто в тот роковой день пришёл домой прежде прочих. Расследование выявило следующие факты.
  1. Соседка Марья Кузьминична хотела одолжить у Петровых соли, звонила им в дверь, но никто не открыл. Во сколько? Да кто ж знает? Темно уж было...
  2. Галина Ефимовна Петрова, придя вечером домой, обнаружила обоих детей на кухне, а мужа на диване – у него болела голова.
  3. Муж Анатолий Иванович заявил, что как пришёл, сразу лёг на диван и задремал, никого не видел, ничего не слышал, соседка точно не приходила – звонок бы его разбудил.
  4. Дочь Светлана сказала, что, вернувшись домой, сразу ушла к себе в комнату, про отца ничего не знает, но в прихожей, как всегда, споткнулась о Димкин ботинок.
  5. Дмитрий когда пришёл – не помнит, отца не видел, а как Светка ругалась из-за ботинка – слышал.
  "Ага, – задумался Башковицкий. – Какова же вероятность того, что Дмитрий вернулся домой раньше отца?"

ВверхВниз   Решение


В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона. Какое наибольшее число баронов могло быть при этих условиях?
(В королевстве действовал закон: "вассал моего вассала – не мой вассал".)

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 66375

Темы:   [ Отношение порядка ]
[ Математическая логика (прочее) ]
Сложность: 3
Классы: 4,5,6

Незнайка выписал семь двузначных чисел в порядке возрастания. Затем одинаковые цифры заменил одинаковыми буквами, а разные – разными. Получилось вот что: ХА, АЙ, АХ, ОЙ, ЭМ, ЭЙ, МУ. Докажите, что Незнайка что-то перепутал.

Прислать комментарий     Решение

Задача 98105

Темы:   [ Отношение порядка ]
[ Деревья ]
[ Принцип крайнего (прочее) ]
[ Оценка + пример ]
Сложность: 3
Классы: 7,8

В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона. Какое наибольшее число баронов могло быть при этих условиях?
(В королевстве действовал закон: "вассал моего вассала – не мой вассал".)

Прислать комментарий     Решение

Задача 98227

Темы:   [ Отношение порядка ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

Во время бала каждый юноша танцевал вальс с девушкой либо более красивой, чем на предыдущем танце, либо более умной, а один – с девушкой одновременно более красивой и более умной. Могло ли такое быть? (Юношей и девушек на балу было поровну.)

Прислать комментарий     Решение

Задача 35561

Темы:   [ Отношение порядка ]
[ Соображения непрерывности ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3+
Классы: 9,10

Некто расставил в произвольном порядке 10-томное собрание сочинений. Назовём беспорядком пару томов, для которых том с большим номером стоит левее. Для данной расстановки томов посчитано число S всех беспорядков. Какие значения может принимать S?

Прислать комментарий     Решение

Задача 60363

Темы:   [ Отношение порядка ]
[ Числовые таблицы и их свойства ]
Сложность: 3+
Классы: 8,9,10

Дана прямоугольная таблица, в каждой клетке которой написано вещественное число, причем в каждой строке таблицы числа расположены в порядке возрастания. Докажите, что если расположить числа в каждом столбце таблицы в порядке возрастания, то в строках полученной таблицы числа по-прежнему будут располагаться в порядке возрастания.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .