ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В каждой клетке квадрата 8×8 клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть |
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1341]
В каждой клетке квадрата 8×8 клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть
Барон Мюнхгаузен утверждает, что смог разрезать некоторый равнобедренный треугольник на три треугольника так, что из любых двух можно сложить равнобедренный треугольник. Не хвастает ли барон?
Имеется много одинаковых прямоугольных картонок размером a×b см, где a и b – целые числа, причём a < b. Известно, что из таких картонок можно сложить и прямоугольник 49×51 см, и прямоугольник 99×101 см. Можно ли по этим данным однозначно определить a и b?
Как, не отрывая карандаша от бумаги, провести шесть отрезков таким образом, чтобы оказались зачёркнутыми 16 точек, расположенных в вершинах квадратной сетки 4×4?
Можно ли в центры 16 клеток шахматной доски 8×8 вбить гвозди так, чтобы никакие три гвоздя не лежали на одной прямой?
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1341] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|