ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Мальвина записала равенство МА·ТЕ·МА·ТИ·КА = 2016000 и предложила Буратино заменить одинаковые буквы одинаковыми цифрами, разные буквы – разными цифрами, чтобы равенство стало верным. Есть ли у Буратино шанс выполнить задание? После экспериментов с мнимой единицей, Коля Васин занялся комплексной экспонентой. Пользуясь формулами задачи 61115, он смог доказать, что sin x всегда равен нулю, а cos x – единице:
Ромб ABCD и параллелограмм BCFE с углом
Дан треугольник $ABC$. Точки $A_1$, $A_2$, $B_1$, $B_2$ берутся на его описанной окружности так, что $A_1B_1\parallel AB$, $A_1A_2\parallel BC$, $B_1B_2\parallel AC$. Прямые $AA_2$ и $CA_1$ пересекаются в точке $A'$, а прямые $BB_2$ и $CB_1$ – в точке $B'$. Докажите, что все прямые $A'B'$ проходят через одну точку. Числа m и n называются дружественными, если сумма собственных делителей числа m равна n и, наоборот, сумма собственных делителей числа n равна m. Другими словами, числа m и n являются дружественными, если σ(m) – m = n и σ(n) – n = m.
Дан ромб ABCD. Окружность радиуса R касается прямых AB и AD в точках B и D соответственно и пересекает сторону BC в точке L, причём 4BL = BC. Найдите площадь ромба.
На сторонах AB и BC треугольника ABC выбраны точки
K и N соответственно. M – середина стороны AC .
Известно, что
В выпуклом четырёхугольнике ABCD заключены две окружности одинакового радиуса r, касающиеся друг друга внешним образом. Центр первой окружности находится на отрезке, соединяющем вершину A с серединой F стороны CD, а центр второй окружности находится на отрезке, соединяющем вершину C с серединой E стороны AB. Первая окружность касается сторон AB, AD и CD, а вторая окружность касается сторон AB, BC и CD. Найдите AC.
Вычислите: Существуют ли такие две функции с наименьшими положительными периодами 2 и 6, что их сумма имеет наименьший положительный период 3? Пусть A', B', C', D', E', F' – середины сторон AB, BC, CD, DE, EF, FA произвольного выпуклого шестиугольника ABCDEF. Известны площади треугольников ABC', BCD', CDE', DEF', EFA', FAB'. Найдите площадь шестиугольника ABCDEF. |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 107]
В прямоугольной трапеции основания равны 17 и 25, а большая боковая сторона равна 10. Через середину M этой стороны проведён к ней перпендикуляр, пересекающий продолжение второй боковой стороны в точке P. Найдите MP.
Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.
Пусть A', B', C', D', E', F' – середины сторон AB, BC, CD, DE, EF, FA произвольного выпуклого шестиугольника ABCDEF. Известны площади треугольников ABC', BCD', CDE', DEF', EFA', FAB'. Найдите площадь шестиугольника ABCDEF.
На боковых сторонах AB и BC равнобедренного треугольника ABC взяты точки K и L соответственно, так что AK + LC = KL. Из середины M отрезка KL провели прямую, параллельную BC, и эта прямая пересекла сторону AC в точке N. Найдите величину угла KNL.
Пусть M(x0, y0) – середина отрезка с концами в точках A(x1, y1) и B(x2, y2). Докажите, что x0 = ½ (x1 + x2), y0 = ½ (y1 + y2).
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 107]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке