ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На координатной плоскости расположили треугольник так, что его сдвиги на векторы с целочисленными координатами не перекрываются.
  а) Может ли площадь такого треугольника быть больше ½?
  б) Найдите наибольшую возможную площадь такого треугольника.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 109]      



Задача 98555

Темы:   [ Параллельный перенос (прочее) ]
[ Геометрия на клетчатой бумаге ]
[ Центральная симметрия помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Экстремальные свойства треугольника (прочее) ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

На координатной плоскости расположили треугольник так, что его сдвиги на векторы с целочисленными координатами не перекрываются.
  а) Может ли площадь такого треугольника быть больше ½?
  б) Найдите наибольшую возможную площадь такого треугольника.

Прислать комментарий     Решение

Задача 108086

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону построен квадрат ABDE. Известно, что  AC = 1,   BC = 3.
В каком отношении делит сторону DE биссектриса угла C?

Прислать комментарий     Решение

Задача 65667

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
[ Центральная симметрия помогает решить задачу ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 7,8,9

На медиане AM треугольника ABC нашлась такая точка K, что  AK = BM.  Кроме того,  ∠AMC = 60°.  Докажите, что  AC = BK.

Прислать комментарий     Решение

Задача 116074

Темы:   [ Перегруппировка площадей ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Подобные треугольники (прочее) ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

На сторонах AB и BC треугольника ABC взяты точки M и K соответственно так, что  SKMC + SKAC = SABC.
Докажите, что все такие прямые MK проходят через одну точку.

Прислать комментарий     Решение

Задача 64782

Темы:   [ Сфера, описанная около тетраэдра ]
[ Сферы (прочее) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

Сфера ω проходит через вершину S пирамиды SABC и пересекает рёбра SA, SB и SC вторично в точках A1, B1 и C1 соответственно. Сфера Ω, описанная около пирамиды SABC, пересекается с ω по окружности, лежащей в плоскости, параллельной плоскости (ABC). Точки A2, B2 и C2 симметричны точкам A1, B1 и C1 относительно середин рёбер SA, SB и SC соответственно. Докажите, что точки A, B, C, A2, B2 и C2 лежат на одной сфере.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 109]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .