Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 114]
|
|
Сложность: 3+ Классы: 10,11
|
Докажите, что диагонали AD, BE, CF вписанного шестиугольника ABCDEF пересекаются в одной точке в каждом из следующих случаев:
а) AB = BC, CD = DE, EF = FA;
б) AB = BC, CD = FA, EF = DE;
в) AB = DE, CD = FA, EF = BC.
Дана описанная четырёхугольная пирамида ABCDS. Противоположные стороны основания пересекаются в точках P и Q, причём точки A и B лежат на отрезках PD и PC. Вписанная сфера касается боковых граней ABS и BCS в точках K и L. Докажите, что если прямые PK и QL пересекаются, то точка касания сферы и основания лежит на отрезке BD.
|
|
Сложность: 4 Классы: 8,9,10,11
|
На сторонах угла взяты точки A, B. Через середину M отрезка AB проведены две прямые, одна из которых пересекает стороны угла в точках A1, B1, другая – в точках A2 , B2. Прямые A1B2 и A2B1 пересекают AB в точках P и Q. Докажите, что M – середина PQ.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Четырёхугольник ABCD описан около окружности, лучи BA и CD пересекаются в точке E, лучи BC и AD – в
точке F. Вписанная окружность треугольника, образованного прямыми AB, CD и биссектрисой угла B, касается прямой AB в точке K, а вписанная окружность треугольника, образованного прямыми AD, BC и биссектрисой угла B, касается прямой BC в точке L. Докажите, что прямые KL, AC и EF пересекаются в одной точке.
|
|
Сложность: 4+ Классы: 10,11
|
На плоскости даны n (n > 2) точек, никакие три из которых не лежат на одной прямой. Сколькими различными способами это множество точек можно разбить на два непустых подмножества так, чтобы выпуклые оболочки этих подмножеств не пересекались?
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 114]