ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 590]      



Задача 34970

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Покрытия ]
Сложность: 3+
Классы: 8,9

Несколько углов покрывают плоскость. Докажите, что сумма этих углов не меньше 360°.

Прислать комментарий     Решение

Задача 35200

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Плоскость, разрезанная прямыми ]
[ Пятиугольники ]
[ Выпуклые многоугольники ]
Сложность: 3+
Классы: 7,8,9

Внутри выпуклого пятиугольника расположены две точки. Докажите, что можно выбрать четырехугольник с вершинами в вершинах пятиугольника так, что в него попадут обе выбранные точки.
Прислать комментарий     Решение


Задача 35758

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Пятиугольники ]
[ Вписанные и описанные окружности ]
[ Правильные многоугольники ]
Сложность: 3+
Классы: 8,9

Все точки окружности окрашены произвольным образом в два цвета.
Докажите, что найдётся равнобедренный треугольник с вершинами одного цвета, вписанный в эту окружность.

Прислать комментарий     Решение

Задача 58097

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Ортогональная (прямоугольная) проекция ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3+
Классы: 8,9,10,11

Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10.
Докажите, что найдётся прямая, пересекающая по крайней мере четыре из этих окружностей.

Прислать комментарий     Решение

Задача 60844

Темы:   [ Принцип Дирихле (прочее) ]
[ Рациональные и иррациональные числа ]
[ Периодические и непериодические дроби ]
Сложность: 3+
Классы: 8,9,10

Докажите, что число рационально тогда и только тогда, когда оно представляется конечной или периодической десятичной дробью.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .