Страница:
<< 17 18 19 20 21 22 23 [Всего задач: 112]
|
|
Сложность: 4- Классы: 9,10,11
|
В окружность вписан прямоугольный треугольник ABC с гипотенузой AB. Пусть K – середина дуги BC, не содержащей точку A, N – середина отрезка AC, M – точка пересечения луча KN с окружностью. В точках A и C проведены касательные к окружности, которые пересекаются в точке E. Докажите, что
∠EMK = 90°.
|
|
Сложность: 5 Классы: 9,10,11
|
Два прямоугольных треугольника расположены на плоскости так, что их медианы, проведенные к
гипотенузам, параллельны. Докажите, что угол между некоторым катетом одного треугольника и
некоторым катетом другого треугольника вдвое меньше угла между их гипотенузами.
Страница:
<< 17 18 19 20 21 22 23 [Всего задач: 112]