Страница:
<< 17 18 19 20 21 22
23 >> [Всего задач: 112]
Длины сторон некоторого треугольника и диаметр вписанной в него
окружности являются четырьмя последовательными членами арифметической
прогрессии. Найдите все такие треугольники.
В треугольник ABC с прямым углом C вписана окружность, касающаяся
сторон AC, BC и AB в точках M, K и N соответственно.
Через точку K провели прямую, перпендикулярную отрезку MN. Она пересекла катет AC в точке X. Докажите, что CK = AX.
Восстановите прямоугольный треугольник ABC (∠C = 90°) по вершинам A, C и точке на биссектрисе угла B .
В треугольнике ABC проведена медиана CF. Точки X и Y симметричны F относительно медиан AD и BE соответственно.
Докажите, что центры описанных окружностей треугольников BEX и ADY совпадают.
Построить прямоугольный треугольник по радиусам вписанной и
вневписанной (в прямой угол) окружностей.
Страница:
<< 17 18 19 20 21 22
23 >> [Всего задач: 112]