ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 113]      



Задача 116344

Темы:   [ Ортоцентр и ортотреугольник ]
[ Параллелограммы (прочее) ]
[ Вписанный угол (прочее) ]
[ Прямоугольные треугольники (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9,10

Треугольник BHC, где H – ортоцентр треугольника ABC, достроен до параллелограмма BHCD. Докажите, что ∠BAD = ∠CAH.

Прислать комментарий     Решение

Задача 109950

Темы:   [ Формула Герона ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Арифметическая прогрессия ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Губин Я.

Длины сторон некоторого треугольника и диаметр вписанной в него окружности являются четырьмя последовательными членами арифметической прогрессии. Найдите все такие треугольники.
Прислать комментарий     Решение


Задача 109503

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства параллелограмма ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 4-
Классы: 8,9

В треугольник ABC с прямым углом C вписана окружность, касающаяся сторон AC, BC и AB в точках M, K и N соответственно. Через точку K провели прямую, перпендикулярную отрезку MN. Она пересекла катет AC в точке X. Докажите, что  CK = AX.

Прислать комментарий     Решение

Задача 110759

Темы:   [ Построение треугольников по различным точкам ]
[ Биссектриса угла ]
[ Симметрия помогает решить задачу ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 4-
Классы: 8,9

Восстановите прямоугольный треугольник ABC  (∠C = 90°)  по вершинам A, C и точке на биссектрисе угла B .

Прислать комментарий     Решение

Задача 66301

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
[ Признаки и свойства параллелограмма ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведена медиана CF. Точки X и Y симметричны F относительно медиан AD и BE соответственно.
Докажите, что центры описанных окружностей треугольников BEX и ADY совпадают.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .