Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]      



Задача 67091

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Ивлев Ф.

Вписанная и вневписанная окружности треугольника $ABC$ касаются отрезка $AC$ в точках $P$ и $Q$ соответственно. Прямые $BP$ и $BQ$ вторично пересекают описанную окружность треугольника $ABC$ в точках $P'$ и $Q'$ соответственно. Докажите, что $PP' > QQ'$.
Прислать комментарий     Решение


Задача 115871

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Против большей стороны лежит больший угол ]
[ Неравенства для элементов треугольника (прочее) ]
[ Площадь треугольника (через высоту и основание) ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9,10,11

Даны окружность и не лежащая на ней точка. Из всех треугольников, одна вершина которых совпадает с данной точкой, а две другие лежат на окружности, выбран треугольник наибольшей площади. Докажите, что он равнобедренный.

Прислать комментарий     Решение

Задача 64878

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Против большей стороны лежит больший угол ]
[ Неравенства для элементов треугольника (прочее) ]
[ Теорема синусов ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 9,10,11

В неравнобедренном треугольнике ABC высота из вершины A, биссектриса из вершины B и медиана из вершины C пересекаются в одной точке K.
  а) Какая из сторон треугольника средняя по величине?
  б) Какой из отрезков AK, BK, CK средний по величине?

Прислать комментарий     Решение

Задача 67376

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема синусов ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 4
Классы: 9,10,11

В треугольнике $ABC$ провели биссектрисы $BE$ и $CF$. Докажите, что $2EF \leq BF+CE$.
Прислать комментарий     Решение


Задача 116194

Темы:   [ Подобные треугольники (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Неравенства для элементов треугольника (прочее) ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4
Классы: 10,11

Bнутри треугольника ABC выбрана произвольная точка M. Докажите, что  MA + MB + MC ≤ max {AB + BC, BC + AC, AC + AB}.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .