Страница:
<< 8 9 10 11 12
13 14 >> [Всего задач: 70]
|
|
|
Сложность: 4- Классы: 8,9,10
|
В остроугольном треугольнике ABC проведены высоты BB1 и CC1. A0 – середина стороны BC. Прямые A0B1 и A0C1 пересекают прямую, проходящую через вершину A параллельно прямой BC, в точках P и Q. Докажите, что центр вписанной окружности треугольника PA0Q лежит на высоте треугольника ABC.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Остроугольный треугольник ABC (AB < AC) вписан в окружность Ω. Пусть M – точка пересечения его медиан, а AH – высота. Луч MH пересекает Ω в точке A'. Докажите, что описанная окружность треугольника A'HB касается прямой
AB.
В треугольнике ABC O – центр описанной окружности, I – центр вписанной. Прямая, проходящая через I и перпендикулярная OI, пересекает AB в точке X, а внешнюю биссектрису угла C – в точке Y. В каком отношении I делит отрезок XY?
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Постройте треугольник $ABC$ по вершине $A$, центру описанной окружности $O$ и прямой Эйлера, если известно, что прямая Эйлера отсекает на сторонах $AB$ и $AC$ равные отрезки от вершины $A$.
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Радиусы описанной и вписанной окружностей треугольника ABC равны R и r; O, I – центры этих окружностей. Внешняя биссектриса угла C пересекает прямую AB в точке P. Точка Q – проекция точки P на прямую OI. Найдите расстояние OQ.
Страница:
<< 8 9 10 11 12
13 14 >> [Всего задач: 70]