ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70]      



Задача 65375

Темы:   [ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 5-
Классы: 9,10,11

В треугольнике ABC серединный перпендикуляр к BC пересекает прямые AB и AC в точках AB и AC соответственно. Обозначим через Oa центр описанной окружности треугольника AABAC. Аналогично определим Ob и Oc. Докажите, что описанная окружность треугольника OaObOc касается описанной окружности исходного треугольника.

Прислать комментарий     Решение

Задача 65809

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
[ Вписанный угол, опирающийся на диаметр ]
[ Центр поворотной гомотетии ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 5-
Классы: 9,10,11

BB1 и CC1 – высоты треугольника ABC. Касательные к описанной окружности треугольника AB1C1 в точках B1 и C1 пересекают прямые AB и AC в точках M и N соответственно. Докажите, что вторая точка пересечения описанных окружностей треугольников AMN и AB1C1 лежит на прямой Эйлера треугольника ABC.

Прислать комментарий     Решение

Задача 58399

Темы:   [ Связь величины угла с длиной дуги и хорды ]
[ Прямая Симсона ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 6+
Классы: 9,10

Во вписанном четырёхугольнике ABCD прямая Симсона точки A относительно треугольника BCD перпендикулярна прямой Эйлера треугольника BCD. Докажите, что прямая Симсона точки B относительно треугольника ACD перпендикулярна прямой Эйлера треугольника ACD.
Прислать комментарий     Решение


Задача 58348

 [Теорема Фейербаха]
Темы:   [ Цепочки окружностей. Теорема Фейербаха ]
[ Инверсия помогает решить задачу ]
[ Прямая Эйлера и окружность девяти точек ]
[ Вписанные и описанные окружности ]
Сложность: 7
Классы: 9,10,11

а) Докажите, что окружность, проходящая через середины сторон треугольника, касается его вписанной и трех вневписанных окружностей (Фейербах).
б) На сторонах AB и AC треугольника ABC взяты точки C1 и B1 так, что AC1 = B1C1 и вписанная окружность S треугольника ABC является вневписанной окружностью треугольника AB1C1. Докажите, что вписанная окружность треугольника AB1C1 касается окружности, проходящей через середины сторон треугольника ABC.
Прислать комментарий     Решение


Задача 64895

Темы:   [ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
[ Гомотетия помогает решить задачу ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 3+
Классы: 8,9,10,11

Точки D, Е и F – середины сторон ВС, АС и АВ треугольника АВС соответственно. Через центры вписанных окружностей треугольников AEF, BDF и СDE проведена окружность. Докажите, что её радиус равен радиусу описанной окружности треугольника DEF.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .