ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 317]      



Задача 102274

Темы:   [ Касающиеся окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3
Классы: 8,9

Даны две окружности. Первая окружность вписана в треугольник ABC , вторая касается стороны AC и продолжений сторон AB и BC . Известно, что эти окружности касаются друг друга, произведение их радиусов равно 20, а угол BAC равен arccos . Найдите периметр треугольника ABC .
Прислать комментарий     Решение


Задача 108040

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Подобные треугольники (прочее) ]
Сложность: 3
Классы: 8,9

Автор: Табов Й.

Даны две окружности, лежащие одна вне другой. Пусть A1 и A2 – наиболее удалённые друг от друга точки пересечения этих окружностей с их линией центров, так что A1 лежит на первой окружности, а A2 – на второй. Из точки A1 проведены два луча, касающиеся второй окружности, и построен круг K1, касающийся этих лучей и первой окружности изнутри. Из точки A2 проведены два луча, касающиеся первой окружности, и построен круг K2, касающийся этих лучей и второй окружности изнутри. Докажите, что круги K1 и K2 равны.

Прислать комментарий     Решение

Задача 108048

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Каждая из трёх окружностей радиусов соответственно 1, r и r извне касается двух других.
При каких значениях r существует треугольник, описанный около этих окружностей?

Прислать комментарий     Решение

Задача 108053

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Средняя линия трапеции ]
Сложность: 3
Классы: 8,9

Внутри угла расположены две окружности с центрами A и B. Они касаются друг друга и двух сторон угла.
Докажите, что окружность с диаметром AB касается сторон угла.

Прислать комментарий     Решение

Задача 110799

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 3
Классы: 8,9

Окружности S1 и S2 с центрами соответственно O1 и O2 касаются внешним образом; прямая касается окружностей в различных точках A и B соответственно. Известно, что точка пересечения диагоналей четырёхугольника O1ABO2 лежит на одной из окружностей. Найдите отношение радиусов окружностей.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 317]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .