ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 2247]      



Задача 53554

Тема:   [ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Найдите стороны этого прямоугольника, зная, что одна из них вдвое больше другой и что диагональ квадрата равна 12.

Прислать комментарий     Решение


Задача 53674

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Найдите радиус окружности, вписанной в ромб со стороной a и острым углом 60o.

Прислать комментарий     Решение


Задача 54309

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

В ромбе ABCD точки M и N — середины сторон BC и CD соответственно. Найдите угол MAN, если $ \angle$BAD = 60o.

Прислать комментарий     Решение


Задача 54320

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Одно из оснований трапеции служит диаметром окружности радиуса R, а другое является хордой и отсекает от окружности дугу в $ \alpha$ радиан ( 0 < $ \alpha$ < $ \pi$). Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 54409

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Периметр ромба равен 48, а сумма диагоналей равна 26. Найдите площадь ромба.

Прислать комментарий     Решение


Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .