ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Пусть M — середина отрезка AB, M1 — середина отрезка A1B1. Докажите, что $ \overrightarrow{MM}_{1}^{}$ = $ {\frac{1}{2}}$($ \overrightarrow{AA_{1}} $ + $ \overrightarrow{BB_{1}} $).

Вниз   Решение


Автор: Бутырин Б.

Назовём тройку чисел триплетом, если одно из них равно среднему арифметическому двух других. Дана бесконечная последовательность $(a_n)$, состоящая из натуральных чисел. Известно, что $a_1=a_2=1$ и при $n > 2$ число $a_n$ — минимальное натуральное число такое, что среди чисел $a_1,a_2,\ldots,a_n$ нет трёх, образующих триплет. Докажите, что $a_n\leqslant \frac{n^2+7}{8}$ для любого $n$.

Вверх   Решение

Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 2257]      



Задача 53254

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
Сложность: 3
Классы: 8,9

В равнобедренную трапецию площадью 28 вписана окружность радиуса 2. Найдите боковую сторону трапеции.

Прислать комментарий     Решение


Задача 53490

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Перпендикуляр, опущенный из вершины прямоугольника на его диагональ, делит её в отношении 1:3. Найдите диагональ, если известно, что точка её пересечения с другой диагональю удалена от большей стороны на расстояние, равное 2.

Прислать комментарий     Решение


Задача 53554

Тема:   [ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Найдите стороны этого прямоугольника, зная, что одна из них вдвое больше другой и что диагональ квадрата равна 12.

Прислать комментарий     Решение


Задача 53674

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Найдите радиус окружности, вписанной в ромб со стороной a и острым углом 60o.

Прислать комментарий     Решение


Задача 54309

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

В ромбе ABCD точки M и N — середины сторон BC и CD соответственно. Найдите угол MAN, если $ \angle$BAD = 60o.

Прислать комментарий     Решение


Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 2257]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .