Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 2247]
В трапеции ABCD диагональ AC перпендикулярна боковой стороне CD, а диагональ DB перпендикулярна боковой стороне AB.
На продолжениях боковых сторон AB и DC за меньшее основание BC отложены отрезки BM и CN так, что получается новая трапеция BMNC, подобная трапеции ABCD. Найдите площадь трапеции ABCD, если площадь трапеции AMND равна S, а сумма углов CAD и BDA равна 60°.
Через вершину C параллелограмма ABCD проведена произвольная
прямая, пересекающая продолжения сторон AB и AD в точках K и M соответственно. Докажите, что произведение BK·DM не зависит от того, как проведена эта прямая.
Найдите площадь трапеции, если её диагонали равны 17 и 113, а высота равна 15.
В треугольник ABC вписан ромб ADEF так, что угол A у них
общий, а вершина E находится на стороне BC. Найдите сторону ромба, если AB = c и AC = b.
Прямая, проведённая через вершину ромба вне его, отсекает на продолжении двух сторон отрезки p и q. Найдите сторону ромба.
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 2247]