ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 507]
Докажите, что противоположные стороны шестиугольника, образованного сторонами треугольника и касательными к его вписанной окружности, параллельными сторонам, равны между собой.
В окружность радиуса R вписан шестиугольник ABCDEF. Известно, что A = C = E, AB = a, CD = b, EF = c. Найдите площадь шестиугольника ABCDEF.
В выпуклом пятиугольнике ABCDE углы ABC и CDE равны по 90o, стороны BC, CD и AE равны по 1 и сумма сторон AB и DE равна 1. Докажите, что площадь пятиугольника равна 1.
В равнобедренном треугольнике ABC с основанием BC
угол при вершине A равен 80°. Внутри треугольника ABC
взята точка M так, что
а) Докажите, что найдётся многоугольник, который можно разделить отрезком на две равные части так, что этот отрезок разделит одну из сторон многоугольника пополам, а другую – в отношении 1 : 2. б) Найдётся ли выпуклый многоугольник с таким свойством?
Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 507] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|