Страница:
<< 52 53 54 55
56 57 58 >> [Всего задач: 507]
|
|
Сложность: 4 Классы: 7,8,9
|
Известно, что в кадр фотоаппарата, расположенного в точке
O, не могут попасть
предметы
A и
B такие, что угол
AOB больше
179
o. На плоскости
поставлено 1000 таких фотоаппаратов. Одновременно каждым фотоаппаратом делают
по одному снимку. Доказать, что найдётся снимок, на котором сфотографировано
не больше 998 фотоаппаратов.
На двух сторонах AB и BC правильного 2n-угольника взято по
точке K и N, причём угол KEN, где E – вершина, противоположная B, равен 180°/2n. Докажите, что NE – биссектриса угла KNC.
Докажите, что в правильный пятиугольник можно так вписать квадрат, что его вершины будут лежать на четырёх сторонах пятиугольника.
Вершины правильного 2n-угольника A1...A2n разбиты на n пар.
Докажите, что если n = 4m + 2 или n = 4m + 3, то две пары вершин являются концами равных отрезков.
Докажите, что число неравных треугольников с вершинами в вершинах правильного
n-угольника равно ближайшему к
n²/
12 целому числу.
Страница:
<< 52 53 54 55
56 57 58 >> [Всего задач: 507]