Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 509]
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан вписанный в окружность пятиугольник. Докажите, что отношение его площади к сумме диагоналей не превосходит четверти радиуса окружности.
|
|
|
Сложность: 4 Классы: 9,10,11
|
Большая окружность вписана в ромб, каждая из двух меньших окружностей касается двух сторон ромба и большой окружности, как на рисунке. Через точки касания окружностей со сторонами ромба провели четыре штриховые прямые, как на рисунке. Докажите, что они образуют квадрат.

Из картона вырезали два одинаковых многоугольника, совместили их и проткнули в
некоторой точке булавкой. При повороте одного из многоугольников около этой
"оси" на
25
o30

он снова совместился со вторым
многоугольником. Каково наименьшее возможное число сторон таких многоугольников?
Дан выпуклый пятиугольник
ABCDE. Сторонами, противоположными вершинам
A,
B,
C,
D,
E, мы называем соответственно отрезки
CD,
DE,
EA,
AB,
BC. Докажите, что если произвольную точку
M,
лежащую внутри пятиугольника, соединить прямыми со всеми его вершинами, то из
этих прямых либо ровно одна, либо ровно три, либо ровно пять пересекают стороны
пятиугольника, противоположные вершинам, через которые они проходят.
|
|
|
Сложность: 4 Классы: 10,11
|
В многоугольнике существуют такие точки
A и
B, что любая соединяющая их
ломаная, проходящая внутри или по границе многоугольника, имеет длину больше
1. Доказать, что периметр многоугольника больше 2.
Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 509]