Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 507]
|
|
Сложность: 3+ Классы: 7,8,9
|
Докажите, что существует многоугольник, который можно разделить отрезком на две равные части так, что этот отрезок разделит одну из сторон многоугольника пополам, а другую – в отношении 2 : 1.
В выпуклом шестиугольнике ABCDEF диагонали AD, BE и CF равны. Пусть P – точка пересечения диагналей AD и CF, R – точка пересечения диагоналей BE и CF, Q – точка пересечения диагоналей AD и BE. Известно, что AP = PF, BR = CR и DQ = EQ. Докажите, что точки
A, B, C, D, E и F лежат на одной окружности.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Выпуклый многоугольник описан около окружности. Точки касания его сторон с окружностью образуют многоугольник с таким же набором углов (порядок углов может быть другим). Верно ли, что многоугольник правильный?
|
|
Сложность: 3+ Классы: 7,8,9
|
Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины сторон AB и CD. Известно, что IM : AB = IN : CD.
Докажите, что ABCD – трапеция или параллелограмм.
Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 507]