ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 509]      



Задача 111678

Темы:   [ Угол между касательной и хордой ]
[ Пятиугольники ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4
Классы: 8,9

Диагонали AC и BE правильного пятиугольника ABCDE пересекаются в точке K . Докажите, что описанная окружность треугольника CKE касается прямой BC .
Прислать комментарий     Решение


Задача 111909

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Ломаные ]
[ Произвольные многоугольники ]
[ Центральная симметрия помогает решить задачу ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 7,8,9,10,11

Две точки на плоскости несложно соединить тремя ломаными так, чтобы получилось два равных многоугольника (например, как на рис.). Соедините две точки четырьмя ломаными так, чтобы все три получившихся многоугольника были равны. (Ломаные несамопересекающиеся и не имеют общих точек, кроме концов.)

Прислать комментарий     Решение

Задача 115302

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники ]
[ Шестиугольники ]
Сложность: 4
Классы: 8,9

Шестиугольник ABCDEF вписан в окружность. Оказалось, что AB=BD , CE=EF . Диагонали AC и BE пересекаются в точке X , диагонали BE и DF — в точке Y , диагонали BF и AE — в точке Z . Докажите, что треугольник XYZ — равнобедренный.
Прислать комментарий     Решение


Задача 115681

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 4
Классы: 8,9

BB1 и CC1 — высоты остроугольного треугольника ABC с углом A , равным 30o ; B2 и C2 — середины сторон AC и AB соответственно. Докажите, что отрезки B1C2 и B2C1 перпендикулярны.
Прислать комментарий     Решение


Задача 56506

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4+
Классы: 8,9

На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине.
  а) M – точка медианы AA1 (или её продолжения), равноудаленная от точек B1 и C1. Докажите, что  ∠B1MC1 = φ.
  б) O – точка серединного перпендикуляра к отрезку BC, равноудаленная от точек B1 и C1. Докажите, что  ∠B1OC1 = 180° – φ.

Прислать комментарий     Решение

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 509]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .